Introduction to Hilbert C^{*}-modules

Huaxin Lin
Department of Mathematics
East China Normal University
University of Oregon

Bounded module maps

Bounded module maps

Definition 1.1

Let R be a ring. A right R-module M consists of an abelian group ($M,+$) and an operation $: R \times M \rightarrow M$ such that for all $r, s \in R$ and $x, y \in M$, we have

$$
\begin{array}{r}
(x+y) \cdot r=x \cdot r+y \cdot r, \\
x \cdot(r+s)=x \cdot r+x \cdot r, \\
(x \cdot(r s)=(x \cdot r) \cdot s, \\
x \cdot 1=x . \tag{e0.4}
\end{array}
$$

(e0.2)

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module.

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$.

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;
(4) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in H$ and $a \in A$.

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;
(4) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in H$ and $a \in A$.

Define $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$ for $x \in H$.

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;
(4) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in H$ and $a \in A$.

Define $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$ for $x \in H$. Then H is a normed space.

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;
(4) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in H$ and $a \in A$.

Define $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$ for $x \in H$. Then H is a normed space. We say H is a Hilbert A-module if H is complete (w.r.t. $\|\cdot\|$).

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;
(4) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in H$ and $a \in A$.

Define $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$ for $x \in H$. Then H is a normed space. We say H is a Hilbert A-module if H is complete (w.r.t. $\|\cdot\|$).
We will omit the word "right" in the rest of these lecture notes.
The closure of the span of $\{\langle x, y\rangle: x, y \in H\}$ is called the support of H.

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;
(4) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in H$ and $a \in A$.

Define $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$ for $x \in H$. Then H is a normed space. We say H is a Hilbert A-module if H is complete (w.r.t. $\|\cdot\|$).
We will omit the word "right" in the rest of these lecture notes.
The closure of the span of $\{\langle x, y\rangle: x, y \in H\}$ is called the support of H. A Hilbert A-module is said to be full if the support of H is not contained in any closed proper ideal of A.

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;
(4) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in H$ and $a \in A$.

Define $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$ for $x \in H$. Then H is a normed space. We say H is a Hilbert A-module if H is complete (w.r.t. $\|\cdot\|$).
We will omit the word "right" in the rest of these lecture notes.
The closure of the span of $\{\langle x, y\rangle: x, y \in H\}$ is called the support of H.
A Hilbert A-module is said to be full if the support of H is not contained in any closed proper ideal of A.
A Hilbert module H is countably generated

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;
(4) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in H$ and $a \in A$.

Define $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$ for $x \in H$. Then H is a normed space. We say H is a Hilbert A-module if H is complete (w.r.t. $\|\cdot\|$).
We will omit the word "right" in the rest of these lecture notes.
The closure of the span of $\{\langle x, y\rangle: x, y \in H\}$ is called the support of H.
A Hilbert A-module is said to be full if the support of H is not contained in any closed proper ideal of A.
A Hilbert module H is countably generated if there exists a countable set $\left\{x_{n}\right\} \subset H$ such that $\left\{x_{n}\right\}$ generates H as a Hilbert A-module

Definition 1.2

Let A be a C^{*}-algebra and H be a linear space with the structure of a right A-module. We assume that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in H$, $a \in A$ and $\lambda \in \mathbb{C}$. An inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow A$ is a map which has the following properties:
(1) $\langle x, x\rangle \in A_{+}$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for all $x, y, z \in H$;
(3) $\langle x, y a\rangle=\langle x, y\rangle a$ for all $x, y \in H$ and $a \in A$;
(4) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in H$ and $a \in A$.

Define $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$ for $x \in H$. Then H is a normed space. We say H is a Hilbert A-module if H is complete (w.r.t. $\|\cdot\|$).
We will omit the word "right" in the rest of these lecture notes.
The closure of the span of $\{\langle x, y\rangle: x, y \in H\}$ is called the support of H.
A Hilbert A-module is said to be full if the support of H is not contained in any closed proper ideal of A.
A Hilbert module H is countably generated if there exists a countable set $\left\{x_{n}\right\} \subset H$ such that $\left\{x_{n}\right\}$ generates H as a Hilbert A-module (i.e., H is the smallest Hilbert A-module containing $\left\{x_{n}\right\}$).

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$.

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$. In particular, A itself is a Hilbert A-module.

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$. In particular, A itself is a Hilbert A-module.

Definition 1.4

Let X and Y be Hilbert A-modules.

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$. In particular, A itself is a Hilbert A-module.

Definition 1.4

Let X and Y be Hilbert A-modules. A bounded module map $T: X \rightarrow Y$ is a module map which is also a bounded linear map from X to Y.

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$. In particular, A itself is a Hilbert A-module.

Definition 1.4

Let X and Y be Hilbert A-modules. A bounded module map $T: X \rightarrow Y$ is a module map which is also a bounded linear map from X to Y. If H is a Hilbert A-module,

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$. In particular, A itself is a Hilbert A-module.

Definition 1.4

Let X and Y be Hilbert A-modules. A bounded module map $T: X \rightarrow Y$ is a module map which is also a bounded linear map from X to Y. If H is a Hilbert A-module, denote by H^{\sharp} the set of all bounded A-module map from H to A.

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$. In particular, A itself is a Hilbert A-module.

Definition 1.4

Let X and Y be Hilbert A-modules. A bounded module map $T: X \rightarrow Y$ is a module map which is also a bounded linear map from X to Y.
If H is a Hilbert A-module, denote by H^{\sharp} the set of all bounded A-module map from H to A.
Each $h \in H$ gives a map $\hat{h}: H \rightarrow A$ by $\hat{h}(x)=\langle h, x\rangle$ for all $x \in H$.

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$. In particular, A itself is a Hilbert A-module.

Definition 1.4

Let X and Y be Hilbert A-modules. A bounded module map $T: X \rightarrow Y$ is a module map which is also a bounded linear map from X to Y.
If H is a Hilbert A-module, denote by H^{\sharp} the set of all bounded A-module map from H to A.
Each $h \in H$ gives a map $\hat{h}: H \rightarrow A$ by $\hat{h}(x)=\langle h, x\rangle$ for all $x \in H$. Denote by $\hat{H}=\{\hat{h}: h \in H\}$.

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$. In particular, A itself is a Hilbert A-module.

Definition 1.4

Let X and Y be Hilbert A-modules. A bounded module map $T: X \rightarrow Y$ is a module map which is also a bounded linear map from X to Y.
If H is a Hilbert A-module, denote by H^{\sharp} the set of all bounded A-module map from H to A.
Each $h \in H$ gives a map $\hat{h}: H \rightarrow A$ by $\hat{h}(x)=\langle h, x\rangle$ for all $x \in H$. Denote by $\hat{H}=\{\hat{h}: h \in H\}$. We say H is self-dual, if $\hat{H}=H^{\sharp}$.

Example 1.3

Let A be a C^{*}-algebra and R is a closed right ideal of A. Then R is a Hilbert A-module $\left(\langle a, b\rangle=a^{*} b\right)$. In particular, A itself is a Hilbert A-module.

Definition 1.4

Let X and Y be Hilbert A-modules. A bounded module map $T: X \rightarrow Y$ is a module map which is also a bounded linear map from X to Y. If H is a Hilbert A-module, denote by H^{\sharp} the set of all bounded A-module map from H to A.
Each $h \in H$ gives a map $\hat{h}: H \rightarrow A$ by $\hat{h}(x)=\langle h, x\rangle$ for all $x \in H$. Denote by $\hat{H}=\{\hat{h}: h \in H\}$. We say H is self-dual, if $\hat{H}=H^{\sharp}$. H^{\sharp} is a right A-module with $\phi \cdot a(x)=a^{*} \phi(x)$ for all $x \in H$ and $a \in A$.

Definition 1.5

Let H_{1}, H_{2} be Hilbert A-modules. Denote by $\left.B\left(H_{1}, H_{2}\right)\right)$ the space of all bounded A-module maps from H_{1} to H_{2}. Set $B(H)=B\left(H_{1}, H_{2}\right)$ if $H_{1}=H_{2}$.

```
Definition 1.5
Let H},\mp@subsup{H}{2}{},\mp@subsup{H}{2}{}\mathrm{ be Hilbert A-modules. Denote by B(H1,H2)) the space of all
bounded A-module maps from H}\mp@subsup{H}{1}{}\mathrm{ to }\mp@subsup{H}{2}{}\mathrm{ . Set B(H)=B(H
H}=\mp@subsup{H}{2}{}\mathrm{ .
Denote by L(H1,H2) the subspace of all T 
```


Definition 1.5

Let H_{1}, H_{2} be Hilbert A-modules. Denote by $\left.B\left(H_{1}, H_{2}\right)\right)$ the space of all bounded A-module maps from H_{1} to H_{2}. Set $B(H)=B\left(H_{1}, H_{2}\right)$ if $H_{1}=H_{2}$.
Denote by $L\left(H_{1}, H_{2}\right)$ the subspace of all $T \in B\left(H_{1}, H_{2}\right)$ such that there is $T^{*}: H_{2} \rightarrow H_{1}$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x \in H_{1}$ and $y \in H_{2}$.

Definition 1.5

Let H_{1}, H_{2} be Hilbert A-modules. Denote by $\left.B\left(H_{1}, H_{2}\right)\right)$ the space of all bounded A-module maps from H_{1} to H_{2}. Set $B(H)=B\left(H_{1}, H_{2}\right)$ if $H_{1}=H_{2}$.
Denote by $L\left(H_{1}, H_{2}\right)$ the subspace of all $T \in B\left(H_{1}, H_{2}\right)$ such that there is $T^{*}: H_{2} \rightarrow H_{1}$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x \in H_{1}$ and $y \in H_{2}$. Put $L(H)=L\left(H_{1}, H_{2}\right)$ if $H_{1}=H_{2}$.

Example 1.6
 Let A be a C^{*}-algebra

Example 1.6
 Let A be a C^{*}-algebra Denote by $H_{A}=\left\{\left\{a_{n}\right\}: a_{n} \in A, \sum_{n=1}^{\infty} a_{n}^{*} a_{n}\right.$ converges $\}$.

Example 1.6
 Let A be a C^{*}-algebra Denote by
 $H_{A}=\left\{\left\{a_{n}\right\}: a_{n} \in A, \sum_{n=1}^{\infty} a_{n}^{*} a_{n}\right.$ converges $\}$.
 Define $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n=1}^{\infty} a_{n}^{*} b_{n}$.

Example 1.6

Let A be a C^{*}-algebra Denote by
$H_{A}=\left\{\left\{a_{n}\right\}: a_{n} \in A, \sum_{n=1}^{\infty} a_{n}^{*} a_{n}\right.$ converges $\}$.
Define $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n=1}^{\infty} a_{n}^{*} b_{n}$. One checks that H_{A} is a Hilbert A-module.

Example 1.6

Let A be a C^{*}-algebra Denote by
$H_{A}=\left\{\left\{a_{n}\right\}: a_{n} \in A, \sum_{n=1}^{\infty} a_{n}^{*} a_{n}\right.$ converges $\}$.
Define $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n=1}^{\infty} a_{n}^{*} b_{n}$. One checks that H_{A} is a Hilbert A-module. We may also write $H_{A}=I^{2}(A)$.

Example 1.6

Let A be a C^{*}-algebra Denote by
$H_{A}=\left\{\left\{a_{n}\right\}: a_{n} \in A, \sum_{n=1}^{\infty} a_{n}^{*} a_{n}\right.$ converges $\}$.
Define $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n=1}^{\infty} a_{n}^{*} b_{n}$. One checks that H_{A} is a Hilbert A-module. We may also write $H_{A}=I^{2}(A)$.

Suppose that A is unital.

Example 1.6

Let A be a C^{*}-algebra Denote by
$H_{A}=\left\{\left\{a_{n}\right\}: a_{n} \in A, \sum_{n=1}^{\infty} a_{n}^{*} a_{n}\right.$ converges $\}$.
Define $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n=1}^{\infty} a_{n}^{*} b_{n}$. One checks that H_{A} is a Hilbert A-module. We may also write $H_{A}=I^{2}(A)$.

Suppose that A is unital. Let $e_{n}=\left\{b_{k}\right\} \in H_{A}$ such that $b_{k}=1_{A}$ if $k=n$ and $b_{k}=0$ if $k \neq n$.

Example 1.6

Let A be a C^{*}-algebra Denote by
$H_{A}=\left\{\left\{a_{n}\right\}: a_{n} \in A, \sum_{n=1}^{\infty} a_{n}^{*} a_{n}\right.$ converges $\}$.
Define $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n=1}^{\infty} a_{n}^{*} b_{n}$. One checks that H_{A} is a Hilbert A-module. We may also write $H_{A}=I^{2}(A)$.

Suppose that A is unital. Let $e_{n}=\left\{b_{k}\right\} \in H_{A}$ such that $b_{k}=1_{A}$ if $k=n$ and $b_{k}=0$ if $k \neq n$.
Then $\left\{e_{n}\right\}$ forms an "orthonormal basis",

Example 1.6

Let A be a C^{*}-algebra Denote by
$H_{A}=\left\{\left\{a_{n}\right\}: a_{n} \in A, \sum_{n=1}^{\infty} a_{n}^{*} a_{n}\right.$ converges $\}$.
Define $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n=1}^{\infty} a_{n}^{*} b_{n}$. One checks that H_{A} is a Hilbert A-module. We may also write $H_{A}=I^{2}(A)$.

Suppose that A is unital. Let $e_{n}=\left\{b_{k}\right\} \in H_{A}$ such that $b_{k}=1_{A}$ if $k=n$ and $b_{k}=0$ if $k \neq n$.
Then $\left\{e_{n}\right\}$ forms an "orthonormal basis", i.e., for any $x \in H$, there are $a_{n} \in A$ such that $x=\sum_{n=1}^{\infty} e_{n} \cdot a_{n}$.

Example 1.6

Let A be a C^{*}-algebra Denote by
$H_{A}=\left\{\left\{a_{n}\right\}: a_{n} \in A, \sum_{n=1}^{\infty} a_{n}^{*} a_{n}\right.$ converges $\}$.
Define $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n=1}^{\infty} a_{n}^{*} b_{n}$. One checks that H_{A} is a Hilbert A-module. We may also write $H_{A}=I^{2}(A)$.

Suppose that A is unital. Let $e_{n}=\left\{b_{k}\right\} \in H_{A}$ such that $b_{k}=1_{A}$ if $k=n$ and $b_{k}=0$ if $k \neq n$.
Then $\left\{e_{n}\right\}$ forms an "orthonormal basis", i.e., for any $x \in H$, there are $a_{n} \in A$ such that $x=\sum_{n=1}^{\infty} e_{n} \cdot a_{n}$. In general, H_{A} is not self-dual.

Example 1.7

Let A be a C^{*}-algebra which contains a sequence of elements $\left\{d_{n}\right\}$ such that $d_{n} \geq 0,\left\|d_{n}\right\|=1$, and $d_{i} d_{j}=0$ if $i \neq j$.

Example 1.7

Let A be a C^{*}-algebra which contains a sequence of elements $\left\{d_{n}\right\}$ such that $d_{n} \geq 0,\left\|d_{n}\right\|=1$, and $d_{i} d_{j}=0$ if $i \neq j$. Then $H_{A}^{\sharp} \neq H_{A}$.

Example 1.7

Let A be a C^{*}-algebra which contains a sequence of elements $\left\{d_{n}\right\}$ such that $d_{n} \geq 0,\left\|d_{n}\right\|=1$, and $d_{i} d_{j}=0$ if $i \neq j$. Then $H_{A}^{\sharp} \neq H_{A}$.

Define $f: H_{A} \rightarrow A$ by $f\left(\left\{a_{n}\right\}\right)=\sum_{n=1}^{\infty} d_{n} a_{n}$.

Example 1.7

Let A be a C^{*}-algebra which contains a sequence of elements $\left\{d_{n}\right\}$ such that $d_{n} \geq 0,\left\|d_{n}\right\|=1$, and $d_{i} d_{j}=0$ if $i \neq j$. Then $H_{A}^{\sharp} \neq H_{A}$.

Define $f: H_{A} \rightarrow A$ by $f\left(\left\{a_{n}\right\}\right)=\sum_{n=1}^{\infty} d_{n} a_{n}$. Note that, for any $m, N \in \mathbb{N}$ with $m>N$,

Example 1.7

Let A be a C^{*}-algebra which contains a sequence of elements $\left\{d_{n}\right\}$ such that $d_{n} \geq 0,\left\|d_{n}\right\|=1$, and $d_{i} d_{j}=0$ if $i \neq j$. Then $H_{A}^{\sharp} \neq H_{A}$.

Define $f: H_{A} \rightarrow A$ by $f\left(\left\{a_{n}\right\}\right)=\sum_{n=1}^{\infty} d_{n} a_{n}$. Note that, for any $m, N \in \mathbb{N}$ with $m>N$,

$$
\begin{equation*}
\left(\sum_{n=N}^{m} d_{n} a_{n}\right)^{*}\left(\sum_{n=N}^{m} d_{n} a_{n}\right)=\sum_{n=N}^{m} a_{n}^{*} d_{n}^{2} a_{n} \leq \sum_{n=1}^{\infty} a_{n}^{*} a_{n} \rightarrow 0 \tag{e0.5}
\end{equation*}
$$

as $N \rightarrow \infty$.

Example 1.7

Let A be a C^{*}-algebra which contains a sequence of elements $\left\{d_{n}\right\}$ such that $d_{n} \geq 0,\left\|d_{n}\right\|=1$, and $d_{i} d_{j}=0$ if $i \neq j$. Then $H_{A}^{\sharp} \neq H_{A}$.

Define $f: H_{A} \rightarrow A$ by $f\left(\left\{a_{n}\right\}\right)=\sum_{n=1}^{\infty} d_{n} a_{n}$. Note that, for any $m, N \in \mathbb{N}$ with $m>N$,

$$
\begin{equation*}
\left(\sum_{n=N}^{m} d_{n} a_{n}\right)^{*}\left(\sum_{n=N}^{m} d_{n} a_{n}\right)=\sum_{n=N}^{m} a_{n}^{*} d_{n}^{2} a_{n} \leq \sum_{n=1}^{\infty} a_{n}^{*} a_{n} \rightarrow 0 \tag{e0.5}
\end{equation*}
$$

as $N \rightarrow \infty$. It follows $f\left(\left\{a_{n}\right\}\right) \in A$ and f is an A-module map.

Example 1.7

Let A be a C^{*}-algebra which contains a sequence of elements $\left\{d_{n}\right\}$ such that $d_{n} \geq 0,\left\|d_{n}\right\|=1$, and $d_{i} d_{j}=0$ if $i \neq j$. Then $H_{A}^{\sharp} \neq H_{A}$.

Define $f: H_{A} \rightarrow A$ by $f\left(\left\{a_{n}\right\}\right)=\sum_{n=1}^{\infty} d_{n} a_{n}$. Note that, for any $m, N \in \mathbb{N}$ with $m>N$,

$$
\begin{equation*}
\left(\sum_{n=N}^{m} d_{n} a_{n}\right)^{*}\left(\sum_{n=N}^{m} d_{n} a_{n}\right)=\sum_{n=N}^{m} a_{n}^{*} d_{n}^{2} a_{n} \leq \sum_{n=1}^{\infty} a_{n}^{*} a_{n} \rightarrow 0 \tag{e0.5}
\end{equation*}
$$

as $N \rightarrow \infty$. It follows $f\left(\left\{a_{n}\right\}\right) \in A$ and f is an A-module map. We also have

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} d_{n} a_{n}\right)^{*}\left(\sum_{n=1}^{\infty} d_{n} a_{n}\right)=\sum_{n=1}^{\infty} a_{n}^{*} d_{n}^{2} a_{n} \leq \sum_{n=1}^{\infty} a_{n}^{*} a_{n} \tag{e0.6}
\end{equation*}
$$

Example 1.7

Let A be a C^{*}-algebra which contains a sequence of elements $\left\{d_{n}\right\}$ such that $d_{n} \geq 0,\left\|d_{n}\right\|=1$, and $d_{i} d_{j}=0$ if $i \neq j$. Then $H_{A}^{\sharp} \neq H_{A}$.

Define $f: H_{A} \rightarrow A$ by $f\left(\left\{a_{n}\right\}\right)=\sum_{n=1}^{\infty} d_{n} a_{n}$. Note that, for any $m, N \in \mathbb{N}$ with $m>N$,

$$
\begin{equation*}
\left(\sum_{n=N}^{m} d_{n} a_{n}\right)^{*}\left(\sum_{n=N}^{m} d_{n} a_{n}\right)=\sum_{n=N}^{m} a_{n}^{*} d_{n}^{2} a_{n} \leq \sum_{n=1}^{\infty} a_{n}^{*} a_{n} \rightarrow 0 \tag{e0.5}
\end{equation*}
$$

as $N \rightarrow \infty$. It follows $f\left(\left\{a_{n}\right\}\right) \in A$ and f is an A-module map. We also have

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} d_{n} a_{n}\right)^{*}\left(\sum_{n=1}^{\infty} d_{n} a_{n}\right)=\sum_{n=1}^{\infty} a_{n}^{*} d_{n}^{2} a_{n} \leq \sum_{n=1}^{\infty} a_{n}^{*} a_{n} \tag{e0.6}
\end{equation*}
$$

This implies that $\|f\| \leq 1$.

Example 1.7

Let A be a C^{*}-algebra which contains a sequence of elements $\left\{d_{n}\right\}$ such that $d_{n} \geq 0,\left\|d_{n}\right\|=1$, and $d_{i} d_{j}=0$ if $i \neq j$. Then $H_{A}^{\sharp} \neq H_{A}$.

Define $f: H_{A} \rightarrow A$ by $f\left(\left\{a_{n}\right\}\right)=\sum_{n=1}^{\infty} d_{n} a_{n}$. Note that, for any $m, N \in \mathbb{N}$ with $m>N$,

$$
\begin{equation*}
\left(\sum_{n=N}^{m} d_{n} a_{n}\right)^{*}\left(\sum_{n=N}^{m} d_{n} a_{n}\right)=\sum_{n=N}^{m} a_{n}^{*} d_{n}^{2} a_{n} \leq \sum_{n=1}^{\infty} a_{n}^{*} a_{n} \rightarrow 0 \tag{e0.5}
\end{equation*}
$$

as $N \rightarrow \infty$. It follows $f\left(\left\{a_{n}\right\}\right) \in A$ and f is an A-module map. We also have

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} d_{n} a_{n}\right)^{*}\left(\sum_{n=1}^{\infty} d_{n} a_{n}\right)=\sum_{n=1}^{\infty} a_{n}^{*} d_{n}^{2} a_{n} \leq \sum_{n=1}^{\infty} a_{n}^{*} a_{n} \tag{e0.6}
\end{equation*}
$$

This implies that $\|f\| \leq 1$. So $f \in H_{A}^{\sharp}$.

On the other hand, if $H_{A}=H_{A}^{\sharp}$,

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$.

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$. Let $x_{n}=\left\{b_{k}\right\}$, where $b_{k}=0$ if $k \neq n$.

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$. Let $x_{n}=\left\{b_{k}\right\}$, where $b_{k}=0$ if $k \neq n$. Then $\left\langle h, x_{n}\right\rangle=d_{n} b_{n}$ for any $b_{n} \in A$.

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$. Let $x_{n}=\left\{b_{k}\right\}$, where $b_{k}=0$ if $k \neq n$. Then $\left\langle h, x_{n}\right\rangle=d_{n} b_{n}$ for any $b_{n} \in A$. Put $h_{n}=\left\{y_{k}\right\}$, where $y_{k}=d_{k}, 1 \leq k \leq n$, and $y_{k}=0, k \geq n+1$.

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$. Let $x_{n}=\left\{b_{k}\right\}$, where $b_{k}=0$ if $k \neq n$. Then $\left\langle h, x_{n}\right\rangle=d_{n} b_{n}$ for any $b_{n} \in A$. Put $h_{n}=\left\{y_{k}\right\}$, where $y_{k}=d_{k}, 1 \leq k \leq n$, and $y_{k}=0, k \geq n+1$. On $E_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, 0,0, \ldots\right): a_{j} \in A, 1 \leq j \leq n\right\},\left.\hat{h}\right|_{E_{n}}=\left.\hat{h_{n}}\right|_{E_{n}}, n \in \mathbb{N}$.

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$. Let $x_{n}=\left\{b_{k}\right\}$, where $b_{k}=0$ if $k \neq n$. Then $\left\langle h, x_{n}\right\rangle=d_{n} b_{n}$ for any $b_{n} \in A$. Put $h_{n}=\left\{y_{k}\right\}$, where $y_{k}=d_{k}, 1 \leq k \leq n$, and $y_{k}=0, k \geq n+1$. On $E_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, 0,0, \ldots\right): a_{j} \in A, 1 \leq j \leq n\right\},\left.\hat{h}\right|_{E_{n}}=\left.\hat{h_{n}}\right|_{E_{n}}, n \in \mathbb{N}$. It follows that $h=\left\{d_{n}\right\}$.

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$. Let $x_{n}=\left\{b_{k}\right\}$, where $b_{k}=0$ if $k \neq n$. Then $\left\langle h, x_{n}\right\rangle=d_{n} b_{n}$ for any $b_{n} \in A$. Put $h_{n}=\left\{y_{k}\right\}$, where $y_{k}=d_{k}, 1 \leq k \leq n$, and $y_{k}=0, k \geq n+1$. On $E_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, 0,0, \ldots\right): a_{j} \in A, 1 \leq j \leq n\right\},\left.\hat{h}\right|_{E_{n}}=\left.\hat{h_{n}}\right|_{E_{n}}, n \in \mathbb{N}$. It follows that $h=\left\{d_{n}\right\}$. However, $\sum_{n=1}^{\infty} d_{n}^{2}$ does not converge. In other words, $\left\{d_{n}\right\} \notin H_{A}$.

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$. Let $x_{n}=\left\{b_{k}\right\}$, where $b_{k}=0$ if $k \neq n$. Then $\left\langle h, x_{n}\right\rangle=d_{n} b_{n}$ for any $b_{n} \in A$. Put $h_{n}=\left\{y_{k}\right\}$, where $y_{k}=d_{k}, 1 \leq k \leq n$, and $y_{k}=0, k \geq n+1$. On $E_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, 0,0, \ldots\right): a_{j} \in A, 1 \leq j \leq n\right\},\left.\hat{h}\right|_{E_{n}}=\left.\hat{h_{n}}\right|_{E_{n}}, n \in \mathbb{N}$. It follows that $h=\left\{d_{n}\right\}$. However, $\sum_{n=1}^{\infty} d_{n}^{2}$ does not converge. In other words, $\left\{d_{n}\right\} \notin H_{A}$. Hence $f \notin \widehat{H_{A}}$.

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$. Let $x_{n}=\left\{b_{k}\right\}$, where $b_{k}=0$ if $k \neq n$. Then $\left\langle h, x_{n}\right\rangle=d_{n} b_{n}$ for any $b_{n} \in A$. Put $h_{n}=\left\{y_{k}\right\}$, where $y_{k}=d_{k}, 1 \leq k \leq n$, and $y_{k}=0, k \geq n+1$. On $E_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, 0,0, \ldots\right): a_{j} \in A, 1 \leq j \leq n\right\},\left.\hat{h}\right|_{E_{n}}=\left.\hat{h_{n}}\right|_{E_{n}}, n \in \mathbb{N}$. It follows that $h=\left\{d_{n}\right\}$. However, $\sum_{n=1}^{\infty} d_{n}^{2}$ does not converge. In other words, $\left\{d_{n}\right\} \notin H_{A}$. Hence $f \notin \widehat{H_{A}}$.

Theorem

(Kasparov, 1980) Let A be a C*-algebra and H be a countably generated Hilbert A-module.

On the other hand, if $H_{A}=H_{A}^{\sharp}$, then there would be an $h \in H_{A}$ such that $f\left(\left\{a_{k}\right\}\right)=\left\langle h,\left\{a_{k}\right\}\right\rangle$ for all $\left\{a_{k}\right\} \in H_{A}$. Let $x_{n}=\left\{b_{k}\right\}$, where $b_{k}=0$ if $k \neq n$. Then $\left\langle h, x_{n}\right\rangle=d_{n} b_{n}$ for any $b_{n} \in A$. Put $h_{n}=\left\{y_{k}\right\}$, where $y_{k}=d_{k}, 1 \leq k \leq n$, and $y_{k}=0, k \geq n+1$. On $E_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}, 0,0, \ldots\right): a_{j} \in A, 1 \leq j \leq n\right\},\left.\hat{h}\right|_{E_{n}}=\left.\hat{h_{n}}\right|_{E_{n}}, n \in \mathbb{N}$. It follows that $h=\left\{d_{n}\right\}$. However, $\sum_{n=1}^{\infty} d_{n}^{2}$ does not converge. In other words, $\left\{d_{n}\right\} \notin H_{A}$. Hence $f \notin \widehat{H_{A}}$.

Theorem

(Kasparov, 1980) Let A be a C^{*}-algebra and H be a countably generated Hilbert A-module. Then $H_{A} \oplus H \cong H_{A}$ (as Hilbert A-module).

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$. In fcat $\theta_{x, y}^{*}=\theta_{y, x}$.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$. In fcat $\theta_{x, y}^{*}=\theta_{y, x}$. Denote by $K(H)$ the closure of the linear span of $\left\{\theta_{x, y}: x, y \in H\right\}$.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$. In fcat $\theta_{x, y}^{*}=\theta_{y, x}$. Denote by $K(H)$ the closure of the linear span of $\left\{\theta_{x, y}: x, y \in H\right\}$.
We also denote by $B\left(H, H^{\sharp}\right)$ the space of all bounded A-module maps from H to H^{\sharp}.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$. In fcat $\theta_{x, y}^{*}=\theta_{y, x}$. Denote by $K(H)$ the closure of the linear span of $\left\{\theta_{x, y}: x, y \in H\right\}$.
We also denote by $B\left(H, H^{\sharp}\right)$ the space of all bounded A-module maps from H to H^{\sharp}.

Proposition 1.9
Let H be a Hilbert A-module and $x \in H$.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$. In fcat $\theta_{x, y}^{*}=\theta_{y, x}$. Denote by $K(H)$ the closure of the linear span of $\left\{\theta_{x, y}: x, y \in H\right\}$.
We also denote by $B\left(H, H^{\sharp}\right)$ the space of all bounded A-module maps from H to H^{\sharp}.

Proposition 1.9
Let H be a Hilbert A-module and $x \in H$. Then the Hilbert submodule $\overline{x \cdot A} \cong \overline{\langle x, x\rangle^{1 / 2} \cdot A}$.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$. In fcat $\theta_{x, y}^{*}=\theta_{y, x}$. Denote by $K(H)$ the closure of the linear span of $\left\{\theta_{x, y}: x, y \in H\right\}$.
We also denote by $B\left(H, H^{\sharp}\right)$ the space of all bounded A-module maps from H to H^{\sharp}.

Proposition 1.9

Let H be a Hilbert A-module and $x \in H$. Then the Hilbert submodule $\overline{x \cdot A} \cong \overline{\langle x, x\rangle^{1 / 2} \cdot A}$.

> Proof.
> Let $R=\overline{\langle x, x\rangle^{1 / 2} \cdot A}$.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$. In fcat $\theta_{x, y}^{*}=\theta_{y, x}$. Denote by $K(H)$ the closure of the linear span of $\left\{\theta_{x, y}: x, y \in H\right\}$.
We also denote by $B\left(H, H^{\sharp}\right)$ the space of all bounded A-module maps from H to H^{\sharp}.

Proposition 1.9

Let H be a Hilbert A-module and $x \in H$. Then the Hilbert submodule $\overline{x \cdot A} \cong \overline{\langle x, x\rangle^{1 / 2} \cdot A}$.

Proof.

Let $R=\overline{\langle x, x\rangle^{1 / 2} \cdot A}$. Define $U: \overline{x \cdot A} \rightarrow R$ by $U(x \cdot a)=\langle x, x\rangle^{1 / 2} \cdot a$ for all $a \in A$.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$. In fcat $\theta_{x, y}^{*}=\theta_{y, x}$. Denote by $K(H)$ the closure of the linear span of $\left\{\theta_{x, y}: x, y \in H\right\}$.
We also denote by $B\left(H, H^{\sharp}\right)$ the space of all bounded A-module maps from H to H^{\sharp}.

Proposition 1.9

Let H be a Hilbert A-module and $x \in H$. Then the Hilbert submodule $\overline{x \cdot A} \cong \overline{\langle x, x\rangle^{1 / 2} \cdot A}$.

Proof.

Let $R=\overline{\langle x, x\rangle^{1 / 2} \cdot A}$. Define $U: \overline{x \cdot A} \rightarrow R$ by $U(x \cdot a)=\langle x, x\rangle^{1 / 2} \cdot a$ for all $a \in A$. Note that $U(y)^{*} U(z)=\langle y, z\rangle$ for all $y, z \in \overline{x A}$.

Definition 1.8

If H is a Hilbert A-module and $x, y \in H$, then $\theta_{x, y}: H \rightarrow H$ defined to be $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in H$. Note that $\theta_{x, y} \in L(H)$. In fcat $\theta_{x, y}^{*}=\theta_{y, x}$. Denote by $K(H)$ the closure of the linear span of $\left\{\theta_{x, y}: x, y \in H\right\}$.
We also denote by $B\left(H, H^{\sharp}\right)$ the space of all bounded A-module maps from H to H^{\sharp}.

Proposition 1.9

Let H be a Hilbert A-module and $x \in H$. Then the Hilbert submodule $\overline{x \cdot A} \cong \overline{\langle x, x\rangle^{1 / 2} \cdot A}$.

Proof.

Let $R=\overline{\langle x, x\rangle^{1 / 2} \cdot A}$. Define $U: \overline{x \cdot A} \rightarrow R$ by $U(x \cdot a)=\langle x, x\rangle^{1 / 2} \cdot a$ for all $a \in A$. Note that $U(y)^{*} U(z)=\langle y, z\rangle$ for all $y, z \in \overline{x A}$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$,

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$,

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|
$$

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|
$$

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$,

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$.
Similarly, $\lim _{n \rightarrow \infty}\left\|x-x a_{n} a^{\alpha}\right\|=\lim _{n \rightarrow \infty}\left\|a^{1 / 2}\left(1-a_{n} a^{\alpha}\right)\right\|=0$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$. Similarly, $\lim _{n \rightarrow \infty}\left\|x-x a_{n} a^{\alpha}\right\|=\lim _{n \rightarrow \infty}\left\|a^{1 / 2}\left(1-a_{n} a^{\alpha}\right)\right\|=0$. Since $x_{n} a^{\alpha}=x a_{n} a^{\alpha}$,

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$. Similarly, $\lim _{n \rightarrow \infty}\left\|x-x a_{n} a^{\alpha}\right\|=\lim _{n \rightarrow \infty}\left\|a^{1 / 2}\left(1-a_{n} a^{\alpha}\right)\right\|=0$. Since $x_{n} a^{\alpha}=x a_{n} a^{\alpha}$, we obtain that $\lim _{n \rightarrow \infty} x_{n} a^{\alpha}=x$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$. Similarly, $\lim _{n \rightarrow \infty}\left\|x-x a_{n} a^{\alpha}\right\|=\lim _{n \rightarrow \infty}\left\|a^{1 / 2}\left(1-a_{n} a^{\alpha}\right)\right\|=0$. Since $x_{n} a^{\alpha}=x a_{n} a^{\alpha}$, we obtain that $\lim _{n \rightarrow \infty} x_{n} a^{\alpha}=x$. It follows that $x=y_{\alpha}\langle x, x\rangle^{\alpha}$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$.
Similarly, $\lim _{n \rightarrow \infty}\left\|x-x a_{n} a^{\alpha}\right\|=\lim _{n \rightarrow \infty}\left\|a^{1 / 2}\left(1-a_{n} a^{\alpha}\right)\right\|=0$. Since $x_{n} a^{\alpha}=x a_{n} a^{\alpha}$, we obtain that $\lim _{n \rightarrow \infty} x_{n} a^{\alpha}=x$. It follows that $x=y_{\alpha}\langle x, x\rangle^{\alpha}$. Choose $\alpha<\alpha^{\prime}<1 / 2$.

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$.
Similarly, $\lim _{n \rightarrow \infty}\left\|x-x a_{n} a^{\alpha}\right\|=\lim _{n \rightarrow \infty}\left\|a^{1 / 2}\left(1-a_{n} a^{\alpha}\right)\right\|=0$. Since $x_{n} a^{\alpha}=x a_{n} a^{\alpha}$, we obtain that $\lim _{n \rightarrow \infty} x_{n} a^{\alpha}=x$. It follows that $x=y_{\alpha}\langle x, x\rangle^{\alpha}$. Choose $\alpha<\alpha^{\prime}<1 / 2$. Since $\lim _{n \rightarrow \infty} x(1 / n+a)^{-\alpha^{\prime}} a^{\alpha^{\prime}-\alpha}$

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$.
Similarly, $\lim _{n \rightarrow \infty}\left\|x-x a_{n} a^{\alpha}\right\|=\lim _{n \rightarrow \infty}\left\|a^{1 / 2}\left(1-a_{n} a^{\alpha}\right)\right\|=0$. Since $x_{n} a^{\alpha}=x a_{n} a^{\alpha}$, we obtain that $\lim _{n \rightarrow \infty} x_{n} a^{\alpha}=x$. It follows that $x=y_{\alpha}\langle x, x\rangle^{\alpha}$. Choose $\alpha<\alpha^{\prime}<1 / 2$. Since $\lim _{n \rightarrow \infty} x(1 / n+a)^{-\alpha^{\prime}} a^{\alpha^{\prime}-\alpha}=\lim _{n \rightarrow \infty} x(1 / n+a)^{-\alpha^{\prime}}(1 / n+a)^{\alpha^{\prime}-\alpha}$

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$.
Similarly, $\lim _{n \rightarrow \infty}\left\|x-x a_{n} a^{\alpha}\right\|=\lim _{n \rightarrow \infty}\left\|a^{1 / 2}\left(1-a_{n} a^{\alpha}\right)\right\|=0$. Since $x_{n} a^{\alpha}=x a_{n} a^{\alpha}$, we obtain that $\lim _{n \rightarrow \infty} x_{n} a^{\alpha}=x$. It follows that $x=y_{\alpha}\langle x, x\rangle^{\alpha}$. Choose $\alpha<\alpha^{\prime}<1 / 2$. Since $\lim _{n \rightarrow \infty} x(1 / n+a)^{-\alpha^{\prime}} a^{\alpha^{\prime}-\alpha}=\lim _{n \rightarrow \infty} x(1 / n+a)^{-\alpha^{\prime}}(1 / n+a)^{\alpha^{\prime}-\alpha}=$ $\lim _{n \rightarrow \infty} x(1 / n+a)^{-\alpha}=y_{\alpha}$,

Proposition 1.10

Let H be a Hilbert A-module and $x \in H$. Then, for any $0<\alpha<1 / 2$, there exists $y \in \overline{x A}$ with $\langle y, y\rangle^{1 / 2}=\langle x, x\rangle^{1 / 2-\alpha}$ such that $x=y \cdot\langle x, x\rangle^{\alpha}$.

Proof: Put $a=\langle x, x\rangle, a_{n}=(1 / n+a)^{-\alpha}$ and $x_{n}=x \cdot(1 / n+a)^{-\alpha}$, $n \in \mathbb{N}$. We will show that $\left\{x_{n}\right\}$ is Cauchy sequence. Put $\beta_{n, m}=(1 / n+a)^{-\alpha}-(1 / m+a)^{-\alpha}, n, m \in \mathbb{N}$. Then

$$
\left\|x \beta_{n, m}\right\|=\left\|\left(\beta_{n, m}\langle x, x\rangle \beta_{n, m}\right)^{1 / 2}\right\|=\left\|a^{1 / 2} \beta_{n, m}\right\|
$$

Since $a^{1 / 2}(1 / n+a)^{-\alpha}$ converges to $a^{1 / 2-\alpha}$, we conclude that $\left\|x \beta_{n, m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $x_{n} \rightarrow y_{\alpha}$ for some $y_{\alpha} \in H$. Hence $x_{n}\langle x, x\rangle^{\alpha} \rightarrow y_{\alpha}\langle x, x\rangle^{\alpha}$. Moreover, $\left\langle y_{\alpha}, y_{\alpha}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty} a^{1 / 2} a_{n}=a^{1 / 2-\alpha}$.
Similarly, $\lim _{n \rightarrow \infty}\left\|x-x a_{n} a^{\alpha}\right\|=\lim _{n \rightarrow \infty}\left\|a^{1 / 2}\left(1-a_{n} a^{\alpha}\right)\right\|=0$. Since $x_{n} a^{\alpha}=x a_{n} a^{\alpha}$, we obtain that $\lim _{n \rightarrow \infty} x_{n} a^{\alpha}=x$. It follows that $x=y_{\alpha}\langle x, x\rangle^{\alpha}$. Choose $\alpha<\alpha^{\prime}<1 / 2$. Since $\lim _{n \rightarrow \infty} x(1 / n+a)^{-\alpha^{\prime}} a^{\alpha^{\prime}-\alpha}=\lim _{n \rightarrow \infty} x(1 / n+a)^{-\alpha^{\prime}}(1 / n+a)^{\alpha^{\prime}-\alpha}=$ $\lim _{n \rightarrow \infty} x(1 / n+a)^{-\alpha}=y_{\alpha}, \quad y_{\alpha} \in \overline{x A}$.

Lemma 1.11
Let A be a C^{*}-algebra and H be a Hilbert A-module.

Lemma 1.11
Let A be a C^{*}-algebra and H be a Hilbert A-module. Suppose that $x, y \in H$.

Lemma 1.11
Let A be a C*-algebra and H be a Hilbert A-module. Suppose that $x, y \in H$. Then

$$
\begin{equation*}
\langle x, y\rangle^{*}\langle x, y\rangle \leq\|x\|^{2}\langle y, y\rangle . \tag{e0.7}
\end{equation*}
$$

Proof: For any $1 / 3<\alpha<1 / 2$,

Lemma 1.11
Let A be a C*-algebra and H be a Hilbert A-module. Suppose that $x, y \in H$. Then

$$
\begin{equation*}
\langle x, y\rangle^{*}\langle x, y\rangle \leq\|x\|^{2}\langle y, y\rangle . \tag{e0.7}
\end{equation*}
$$

Proof: For any $1 / 3<\alpha<1 / 2$, by Lemma 1.10, write $y=\xi\langle y, y\rangle^{\alpha}$ with $\langle\xi, \xi\rangle=\langle y, y\rangle^{1-2 \alpha}$.

Lemma 1.11
Let A be a C*-algebra and H be a Hilbert A-module. Suppose that $x, y \in H$. Then

$$
\begin{equation*}
\langle x, y\rangle^{*}\langle x, y\rangle \leq\|x\|^{2}\langle y, y\rangle . \tag{e0.7}
\end{equation*}
$$

Proof: For any $1 / 3<\alpha<1 / 2$, by Lemma 1.10, write $y=\xi\langle y, y\rangle^{\alpha}$ with $\langle\xi, \xi\rangle=\langle y, y\rangle^{1-2 \alpha}$. It follows that

$$
\langle x, y\rangle^{*}\langle x, y\rangle=\langle y, y\rangle^{\alpha}\langle\xi, x\rangle\langle x, \xi\rangle\langle y, y\rangle^{\alpha}
$$

Lemma 1.11
Let A be a C*-algebra and H be a Hilbert A-module. Suppose that $x, y \in H$. Then

$$
\begin{equation*}
\langle x, y\rangle^{*}\langle x, y\rangle \leq\|x\|^{2}\langle y, y\rangle . \tag{e0.7}
\end{equation*}
$$

Proof: For any $1 / 3<\alpha<1 / 2$, by Lemma 1.10, write $y=\xi\langle y, y\rangle^{\alpha}$ with $\langle\xi, \xi\rangle=\langle y, y\rangle^{1-2 \alpha}$. It follows that

$$
\langle x, y\rangle^{*}\langle x, y\rangle=\langle y, y\rangle^{\alpha}\langle\xi, x\rangle\langle x, \xi\rangle\langle y, y\rangle^{\alpha} \leq\|\xi\|^{2}\|x\|^{2}\langle y, y\rangle^{2 \alpha} . \quad(\mathrm{e} 0.8)
$$

Lemma 1.11
Let A be a C^{*}-algebra and H be a Hilbert A-module. Suppose that $x, y \in H$. Then

$$
\begin{equation*}
\langle x, y\rangle^{*}\langle x, y\rangle \leq\|x\|^{2}\langle y, y\rangle . \tag{e0.7}
\end{equation*}
$$

Proof: For any $1 / 3<\alpha<1 / 2$, by Lemma 1.10, write $y=\xi\langle y, y\rangle^{\alpha}$ with $\langle\xi, \xi\rangle=\langle y, y\rangle^{1-2 \alpha}$. It follows that

$$
\langle x, y\rangle^{*}\langle x, y\rangle=\langle y, y\rangle^{\alpha}\langle\xi, x\rangle\langle x, \xi\rangle\langle y, y\rangle^{\alpha} \leq\|\xi\|^{2}\|x\|^{2}\langle y, y\rangle^{2 \alpha}
$$

Let $\alpha \nearrow 1 / 2$. Note that $\left\|\langle y, y\rangle^{1-2 \alpha}\right\| \rightarrow 1$ as $\alpha \nearrow 1$.

Definition
 Let C be a C^{*}-algebra.

Definition

Let C be a C^{*}-algebra. Denote by $M(C)$ the multiplier algebra of C. It is the idealizer of C in $C^{* *}$.

Definition

Let C be a C^{*}-algebra. Denote by $M(C)$ the multiplier algebra of C. It is the idealizer of C in $C^{* *}$.
Let $L M(C)=\left\{x \in C^{* *}: x c \in C\right.$ for all $\left.c \in C\right\}$,

Definition

Let C be a C^{*}-algebra. Denote by $M(C)$ the multiplier algebra of C. It is the idealizer of C in $C^{* *}$.
Let $L M(C)=\left\{x \in C^{* *}: x c \in C\right.$ for all $\left.c \in C\right\}$, the left multiplier algebras of C,

Definition

Let C be a C^{*}-algebra. Denote by $M(C)$ the multiplier algebra of C. It is the idealizer of C in $C^{* *}$.
Let $L M(C)=\left\{x \in C^{* *}: x c \in C\right.$ for all $\left.c \in C\right\}$, the left multiplier algebras of C,
$R M(C)=\left\{x \in C^{* *}: c x \in C\right.$ for all $\left.c \in C\right\}$,

Definition

Let C be a C^{*}-algebra. Denote by $M(C)$ the multiplier algebra of C. It is the idealizer of C in $C^{* *}$.
Let $L M(C)=\left\{x \in C^{* *}: x c \in C\right.$ for all $\left.c \in C\right\}$, the left multiplier algebras of C, $R M(C)=\left\{x \in C^{* *}: c x \in C\right.$ for all $\left.c \in C\right\}$, the right multiplier algebras of C,

Definition

Let C be a C^{*}-algebra. Denote by $M(C)$ the multiplier algebra of C. It is the idealizer of C in $C^{* *}$.
Let $L M(C)=\left\{x \in C^{* *}: x c \in C\right.$ for all $\left.c \in C\right\}$, the left multiplier algebras of C,
$R M(C)=\left\{x \in C^{* *}: c x \in C\right.$ for all $\left.c \in C\right\}$, the right multiplier algebras of C,
$Q M(C)=\left\{x \in C^{* *}: a x b \in C\right.$ for all $\left.a, b \in C\right\}$,

Definition

Let C be a C^{*}-algebra. Denote by $M(C)$ the multiplier algebra of C. It is the idealizer of C in $C^{* *}$.
Let $L M(C)=\left\{x \in C^{* *}: x c \in C\right.$ for all $\left.c \in C\right\}$, the left multiplier algebras of C, $R M(C)=\left\{x \in C^{* *}: c x \in C\right.$ for all $\left.c \in C\right\}$, the right multiplier algebras of C,
$Q M(C)=\left\{x \in C^{* *}: a x b \in C\right.$ for all $\left.a, b \in C\right\}$, the quasi-multipliers of C.

Definition

Let C be a C^{*}-algebra. Denote by $M(C)$ the multiplier algebra of C. It is the idealizer of C in $C^{* *}$.
Let $L M(C)=\left\{x \in C^{* *}: x c \in C\right.$ for all $\left.c \in C\right\}$, the left multiplier algebras of C,
$R M(C)=\left\{x \in C^{* *}: c x \in C\right.$ for all $\left.c \in C\right\}$, the right multiplier algebras of C,
$Q M(C)=\left\{x \in C^{* *}: a x b \in C\right.$ for all $\left.a, b \in C\right\}$, the quasi-multipliers of C.

Theorem
(Kasparov, 1980). There is an isometric isomorphism from $L(H)$ onto $M(K(H))$.

Lemma 1.12

Let $x \in H$. Then $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm if $0<\beta_{n}<1$ and $\beta_{n} \rightarrow 0$,

```
Lemma 1.12
Let }x\inH\mathrm{ . Then }x\langlex,x\mp@subsup{\rangle}{}{\mp@subsup{\beta}{n}{}}->x\mathrm{ in norm if 0< ; < < 1 and }\mp@subsup{\beta}{n}{}->0\mathrm{ , and
x(\langlex,x\rangle(\langlex,x\rangle+1/n)-1}->x in norm
```

```
Lemma 1.12
Let }x\inH\mathrm{ . Then }x\langlex,x\mp@subsup{\rangle}{}{\mp@subsup{\beta}{n}{}}->x\mathrm{ in norm if 0< 防<1 and }\mp@subsup{\beta}{n}{}->0\mathrm{ , and
x(\langlex,x\rangle(\langlex,x\rangle+1/n)-1}->x\mathrm{ in norm, as }n->\infty\mathrm{ .
```


Lemma 1.12

Let $x \in H$. Then $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm if $0<\beta_{n}<1$ and $\beta_{n} \rightarrow 0$, and $x\left(\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1} \rightarrow x\right.$ in norm, as $n \rightarrow \infty$.

Proof Put $a=\langle x, x\rangle$.

Lemma 1.12

Let $x \in H$. Then $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm if $0<\beta_{n}<1$ and $\beta_{n} \rightarrow 0$, and $x\left(\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1} \rightarrow x\right.$ in norm, as $n \rightarrow \infty$.

Proof Put $a=\langle x, x\rangle$. Then

$$
\left\langle x-x a^{\beta_{n}}, x-x a^{\beta_{n}}\right\rangle
$$

Lemma 1.12

Let $x \in H$. Then $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm if $0<\beta_{n}<1$ and $\beta_{n} \rightarrow 0$, and $x\left(\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1} \rightarrow x\right.$ in norm, as $n \rightarrow \infty$.

Proof Put $a=\langle x, x\rangle$. Then

$$
\left\langle x-x a^{\beta_{n}}, x-x a^{\beta_{n}}\right\rangle=\left(1-a^{\beta_{n}}\right)\langle x, x\rangle\left(1-a^{\beta_{n}}\right)
$$

Lemma 1.12

Let $x \in H$. Then $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm if $0<\beta_{n}<1$ and $\beta_{n} \rightarrow 0$, and $x\left(\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1} \rightarrow x\right.$ in norm, as $n \rightarrow \infty$.

Proof Put $a=\langle x, x\rangle$. Then

$$
\left\langle x-x a^{\beta_{n}}, x-x a^{\beta_{n}}\right\rangle=\left(1-a^{\beta_{n}}\right)\langle x, x\rangle\left(1-a^{\beta_{n}}\right)=\left(1-a^{2 \beta_{n}}\right) a \rightarrow 0 .
$$

Lemma 1.12

Let $x \in H$. Then $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm if $0<\beta_{n}<1$ and $\beta_{n} \rightarrow 0$, and $x\left(\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1} \rightarrow x\right.$ in norm, as $n \rightarrow \infty$.

Proof Put $a=\langle x, x\rangle$. Then

$$
\left\langle x-x a^{\beta_{n}}, x-x a^{\beta_{n}}\right\rangle=\left(1-a^{\beta_{n}}\right)\langle x, x\rangle\left(1-a^{\beta_{n}}\right)=\left(1-a^{2 \beta_{n}}\right) a \rightarrow 0 .
$$

It follows that $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm.

Lemma 1.12

Let $x \in H$. Then $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm if $0<\beta_{n}<1$ and $\beta_{n} \rightarrow 0$, and $x\left(\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1} \rightarrow x\right.$ in norm, as $n \rightarrow \infty$.

Proof Put $a=\langle x, x\rangle$. Then

$$
\left\langle x-x a^{\beta_{n}}, x-x a^{\beta_{n}}\right\rangle=\left(1-a^{\beta_{n}}\right)\langle x, x\rangle\left(1-a^{\beta_{n}}\right)=\left(1-a^{2 \beta_{n}}\right) a \rightarrow 0 .
$$

It follows that $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm. Moreover

$$
\left\|x-x a(a+1 / n)^{-1}\right\|^{2}
$$

Lemma 1.12

Let $x \in H$. Then $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm if $0<\beta_{n}<1$ and $\beta_{n} \rightarrow 0$, and $x\left(\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1} \rightarrow x\right.$ in norm, as $n \rightarrow \infty$.

Proof Put $a=\langle x, x\rangle$. Then

$$
\left\langle x-x a^{\beta_{n}}, x-x a^{\beta_{n}}\right\rangle=\left(1-a^{\beta_{n}}\right)\langle x, x\rangle\left(1-a^{\beta_{n}}\right)=\left(1-a^{2 \beta_{n}}\right) a \rightarrow 0 .
$$

It follows that $x\langle x, x\rangle^{\beta_{n}} \rightarrow x$ in norm. Moreover

$$
\begin{align*}
\| x-x a(a & +1 / n)^{-1}\left\|^{2}=\right\| a\left(1-a(a+1 / n)^{-1}\right)^{2} \| \tag{e0.9}\\
& =\left\|\left(a^{1 / 2}-a^{1+1 / 2}(a+1 / n)^{-1}\right)^{2}\right\| \rightarrow 0 .
\end{align*}
$$

(e 0.10)

Theorem 1.13 (L-1991)
Let A be a C^{*}-algebra and H be a Hilbert A-module.

Theorem 1.13 (L-1991)
Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\Phi_{L(K(H))}$ is the isomorphism given by Kasparov.

Theorem 1.13 (L-1991)
Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$,

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$, define $\Phi(T)$ by

$$
\Phi(T)(k)=T \cdot k \text { for all } k \in K(H) .
$$

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$, define $\Phi(T)$ by

$$
\Phi(T)(k)=T \cdot k \text { for all } k \in K(H)
$$

It is easy to see that Φ is a linear map from $B(H)$ to $\operatorname{LM}(K(H))$ with $\|\Phi\| \leq 1$.

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$, define $\Phi(T)$ by

$$
\Phi(T)(k)=T \cdot k \text { for all } k \in K(H)
$$

It is easy to see that Φ is a linear map from $B(H)$ to $\operatorname{LM}(K(H))$ with $\|\Phi\| \leq 1$. If $T, S \in B(H)$, for any $k \in K(H)$,

$$
(\Phi(T) \Phi(S))(k)=\Phi(T)(S k)=T S k=\phi(T S) k
$$

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$, define $\Phi(T)$ by

$$
\Phi(T)(k)=T \cdot k \text { for all } k \in K(H)
$$

It is easy to see that Φ is a linear map from $B(H)$ to $\operatorname{LM}(K(H))$ with $\|\Phi\| \leq 1$. If $T, S \in B(H)$, for any $k \in K(H)$,

$$
(\Phi(T) \Phi(S))(k)=\Phi(T)(S k)=T S k=\phi(T S) k
$$

Hence Φ is a homomorphism.

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$, define $\Phi(T)$ by

$$
\Phi(T)(k)=T \cdot k \text { for all } k \in K(H)
$$

It is easy to see that Φ is a linear map from $B(H)$ to $L M(K(H))$ with $\|\Phi\| \leq 1$. If $T, S \in B(H)$, for any $k \in K(H)$,

$$
(\Phi(T) \Phi(S))(k)=\Phi(T)(S k)=T S k=\phi(T S) k
$$

Hence Φ is a homomorphism. Since $\Phi(T)\left(\theta_{x, y}\right)=\theta_{T_{x, y}}$ for all $x, y \in H$,

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$, define $\Phi(T)$ by

$$
\Phi(T)(k)=T \cdot k \text { for all } k \in K(H)
$$

It is easy to see that Φ is a linear map from $B(H)$ to $L M(K(H))$ with $\|\Phi\| \leq 1$. If $T, S \in B(H)$, for any $k \in K(H)$,

$$
(\Phi(T) \Phi(S))(k)=\Phi(T)(S k)=T S k=\phi(T S) k
$$

Hence Φ is a homomorphism. Since $\Phi(T)\left(\theta_{x, y}\right)=\theta_{T_{x, y}}$ for all $x, y \in H$, if $x \in H$,

$$
\left\|\Phi(T)\left(\theta_{x}, T_{x}\right)\right\|=\left\|\theta_{T_{x, x}}\right\|=\left\|T_{x}\right\|^{2} .
$$

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$, define $\Phi(T)$ by

$$
\Phi(T)(k)=T \cdot k \text { for all } k \in K(H)
$$

It is easy to see that Φ is a linear map from $B(H)$ to $L M(K(H))$ with $\|\Phi\| \leq 1$. If $T, S \in B(H)$, for any $k \in K(H)$,

$$
(\Phi(T) \Phi(S))(k)=\Phi(T)(S k)=T S k=\phi(T S) k
$$

Hence Φ is a homomorphism. Since $\Phi(T)\left(\theta_{x, y}\right)=\theta_{T_{x, y}}$ for all $x, y \in H$, if $x \in H$,

$$
\left\|\Phi(T)\left(\theta_{x}, T_{x}\right)\right\|=\left\|\theta_{T_{x, x}}\right\|=\left\|T_{x}\right\|^{2} .
$$

Since $\left\|\theta_{x, T_{x}}\right\|=\left\|\langle x, x\rangle^{1 / 2}\left\langle T_{x}, T_{x}\right\rangle^{1 / 2}\right\|$,

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$, define $\Phi(T)$ by

$$
\Phi(T)(k)=T \cdot k \text { for all } k \in K(H)
$$

It is easy to see that Φ is a linear map from $B(H)$ to $L M(K(H))$ with $\|\Phi\| \leq 1$. If $T, S \in B(H)$, for any $k \in K(H)$,

$$
(\Phi(T) \Phi(S))(k)=\Phi(T)(S k)=T S k=\phi(T S) k
$$

Hence Φ is a homomorphism. Since $\Phi(T)\left(\theta_{x, y}\right)=\theta_{T_{x, y}}$ for all $x, y \in H$, if $x \in H$,

$$
\left\|\Phi(T)\left(\theta_{x}, T_{x}\right)\right\|=\left\|\theta_{T_{x, x}}\right\|=\left\|T_{x}\right\|^{2} .
$$

Since $\left\|\theta_{x,} T_{x}\right\|=\left\|\langle x, x\rangle^{1 / 2}\left\langle T_{x}, T_{x}\right\rangle^{1 / 2}\right\|$, we conclude that $\|\Phi(T)\|=\|T\|$.

Theorem 1.13 (L-1991)

Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric isomorphism $\Phi: B(H) \rightarrow L M(K(H))$ such that $\left.\Phi\right|_{L(K(H))}$ is the isomorphism given by Kasparov.

Proof For $T \in B(H)$, define $\Phi(T)$ by

$$
\Phi(T)(k)=T \cdot k \text { for all } k \in K(H)
$$

It is easy to see that Φ is a linear map from $B(H)$ to $L M(K(H))$ with $\|\Phi\| \leq 1$. If $T, S \in B(H)$, for any $k \in K(H)$,

$$
(\Phi(T) \Phi(S))(k)=\Phi(T)(S k)=T S k=\phi(T S) k
$$

Hence Φ is a homomorphism. Since $\Phi(T)\left(\theta_{x, y}\right)=\theta_{T_{x, y}}$ for all $x, y \in H$, if $x \in H$,

$$
\left\|\Phi(T)\left(\theta_{x}, T_{x}\right)\right\|=\left\|\theta_{T_{x, x}}\right\|=\left\|T_{x}\right\|^{2} .
$$

Since $\left\|\theta_{x,} T_{x}\right\|=\left\|\langle x, x\rangle^{1 / 2}\langle T x, T x\rangle^{1 / 2}\right\|$, we conclude that $\|\Phi(T)\|=\|T\|$. It remans to show that Φ is surjective,

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$.

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$.

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$.

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$,

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$.

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\theta_{x, x}(y)=x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle
$$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\theta_{x, x}(y)=x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle
$$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{aligned}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=
\end{aligned}
$$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{aligned}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y),
\end{aligned}
$$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle
\end{align*}
$$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle
\end{align*}
$$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}$,

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \quad \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$,

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \quad \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and $T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \quad \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=\left(T_{1} \theta_{\xi, \xi}\right)\left(\xi\langle x, x\rangle^{3 \alpha}\right)=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha}$.

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \quad \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=\left(T_{1} \theta_{\xi, \xi}\right)\left(\xi\langle x, x\rangle^{3 \alpha}\right)=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha}$. Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}
$$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \quad \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=\left(T_{1} \theta_{\xi, \xi}\right)\left(\xi\langle x, x\rangle^{3 \alpha}\right)=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha}$. Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \quad \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=\left(T_{1} \theta_{\xi, \xi}\right)\left(\xi\langle x, x\rangle^{3 \alpha}\right)=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha}$. Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H.

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \quad \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=\left(T_{1} \theta_{\xi, \xi}\right)\left(\xi\langle x, x\rangle^{3 \alpha}\right)=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha}$. Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H. We also have that $T_{1} \theta_{x b, x b}(x b)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \eta}(x b)$

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \quad \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=\left(T_{1} \theta_{\xi, \xi}\right)\left(\xi\langle x, x\rangle^{3 \alpha}\right)=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha}$. Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H. We also have that $T_{1} \theta_{x b, x b}(x b)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \eta}(x b)=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1} b\langle x b, x b\rangle$.

To show that Φ is surjective, let $T_{1} \in L M(K(H))$ and $x \in H$. By Lemma 1.10, choose $0<\alpha<1 / 2$ such that $3 \alpha>1, x=\xi\langle x, x\rangle^{\alpha}$ and $\langle\xi, \xi\rangle=\langle x, x\rangle^{1-2 \alpha}$. Set $\zeta=\xi\langle x, x\rangle^{4 \alpha-1}$ and, for any $b \in A$, $\eta=\xi\langle x, x\rangle^{3 \alpha-1} b b^{*}$. Then, for any $y \in H$,

$$
\begin{align*}
\theta_{x, x}(y) & =x\langle x, y\rangle=\xi\langle x, x\rangle^{2 \alpha}\langle\xi, y\rangle=\xi\langle x, x\rangle^{1-2 \alpha}\langle\zeta, y\rangle \\
& =\xi\langle\xi, \xi\rangle\langle\zeta, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(y), \quad \text { and } \quad(\mathrm{e} 0.1 \tag{e0.11}\\
\theta_{x b, x b}(y) & =x b\langle x b, y\rangle=\xi\langle\xi, \xi\rangle\langle x, x\rangle^{3 \alpha-1} b\langle x b, y\rangle=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}(y) .
\end{align*}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \quad \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=\left(T_{1} \theta_{\xi, \xi}\right)\left(\xi\langle x, x\rangle^{3 \alpha}\right)=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha}$. Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H. We also have that $T_{1} \theta_{x b, x b}(x b)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \eta}(x b)=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1} b\langle x b, x b\rangle$.

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha}$.
Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H. We also have that $T_{1} \theta_{x b, \times b}(x b)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \eta}(x b)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha-1} b\langle x b, x b\rangle$.

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha}$.
Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H. We also have that
$T_{1} \theta_{x b, x b}(x b)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \eta}(x b)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha-1} b\langle x b, x b\rangle$. It follows that (using $3 \alpha-1>0$ again)

$$
\psi\left(T_{1}\right)(x b)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x b, \times b}\right)(x b)[\langle x b, x b\rangle+1 / n]^{-1}
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha}$.
Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H. We also have that
$T_{1} \theta_{x b, \times b}(x b)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \eta}(x b)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha-1} b\langle x b, x b\rangle$. It follows that (using $3 \alpha-1>0$ again)

$$
\psi\left(T_{1}\right)(x b)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x b, x b}\right)(x b)[\langle x b, x b\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1} b
$$

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha}$.
Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H. We also have that
$T_{1} \theta_{x b, x b}(x b)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \eta}(x b)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha-1} b\langle x b, x b\rangle$. It follows that (using $3 \alpha-1>0$ again)

$$
\psi\left(T_{1}\right)(x b)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x b, x b}\right)(x b)[\langle x b, x b\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1} b
$$

Thus $\psi\left(T_{1}\right)(x b)=\psi\left(T_{1}\right)(x) b$ for all $b \in A$,

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha}$.
Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H. We also have that
$T_{1} \theta_{x b, x b}(x b)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \eta}(x b)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha-1} b\langle x b, x b\rangle$. It follows that (using $3 \alpha-1>0$ again)

$$
\psi\left(T_{1}\right)(x b)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x b, x b}\right)(x b)[\langle x b, x b\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1} b
$$

Thus $\psi\left(T_{1}\right)(x b)=\psi\left(T_{1}\right)(x) b$ for all $b \in A$, whence $\psi\left(T_{1}\right)$ is a module map.

Hence $\theta_{\xi, \xi} \circ \theta_{\xi, \zeta}=\theta_{x, x}, \theta_{x b, x b}=\theta_{\xi, \xi} \circ \theta_{\xi, \eta}$, and
$T_{1} \theta_{x, x}(x)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \zeta}(x)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha}$.
Define (since $3 \alpha-1>1$, the limit converges in norm)

$$
\psi\left(T_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x, x}\right)(x)[\langle x, x\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}
$$

Moreover, $\psi\left(T_{1}\right)$ is a linear map on H. We also have that
$T_{1} \theta_{x b, x b}(x b)=T_{1} \theta_{\xi, \xi} \circ \theta_{\xi, \eta}(x b)=T_{1} \theta_{\xi, \xi}(\xi)\langle x, x\rangle^{3 \alpha-1} b\langle x b, x b\rangle$. It follows that (using $3 \alpha-1>0$ again)

$$
\psi\left(T_{1}\right)(x b)=\lim _{n \rightarrow \infty}\left(T_{1} \theta_{x b, x b}\right)(x b)[\langle x b, x b\rangle+1 / n]^{-1}=\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1} b
$$

Thus $\psi\left(T_{1}\right)(x b)=\psi\left(T_{1}\right)(x) b$ for all $b \in A$, whence $\psi\left(T_{1}\right)$ is a module map.
Next we estimate that $(3 \alpha>1)$

$$
\begin{aligned}
\left\|\psi\left(T_{1}\right)(x)\right\| & =\left\|\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}\right\| \\
& \leq\left\|T_{1} \theta_{\xi, \xi}\right\|\left\|\xi\langle x, x\rangle^{3 \alpha-1}\right\|=\left\|T_{1}\right\|\|\xi\|^{2}\left\|\langle x, x\rangle^{2 \alpha-1 / 2}\right\|
\end{aligned}
$$

Let $\alpha \rightarrow 1 / 2$. We obtain that

$$
\left\|\psi\left(T_{1}\right)(x)\right\| \leq\left\|T_{1}\right\|\|x\|
$$

Next we estimate that $(3 \alpha>1)$

$$
\begin{aligned}
\left\|\psi\left(T_{1}\right)(x)\right\| & =\left\|\left(T_{1} \theta_{\xi, \xi}\right)(\xi)\langle x, x\rangle^{3 \alpha-1}\right\| \\
& \leq\left\|T_{1} \theta_{\xi, \xi}\right\|\left\|\xi\langle x, x\rangle^{3 \alpha-1}\right\|=\left\|T_{1}\right\|\|\xi\|^{2}\left\|\langle x, x\rangle^{2 \alpha-1 / 2}\right\|
\end{aligned}
$$

Let $\alpha \rightarrow 1 / 2$. We obtain that

$$
\left\|\psi\left(T_{1}\right)(x)\right\| \leq\left\|T_{1}\right\|\|x\|
$$

It follows that $\psi\left(T_{1}\right)$ is a bounded module map and $\left\|\psi\left(T_{1}\right)\right\| \leq\left\|T_{1}\right\|$.

To show the surjectivity of Φ,

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$.

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$,

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$.

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$.

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)
$$

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle
$$

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle=x\langle x, y\rangle .
$$

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle=x\langle x, y\rangle .
$$

Hence $\theta_{w, w} \circ \theta_{w, x}=\theta_{x, x}$.

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle=x\langle x, y\rangle .
$$

Hence $\theta_{w, w} \circ \theta_{w, x}=\theta_{x, x}$. We also have

$$
\lim _{n \rightarrow \infty} T_{1} \theta_{w, w}(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}
$$

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle=x\langle x, y\rangle .
$$

Hence $\theta_{w, w} \circ \theta_{w, x}=\theta_{x, x}$. We also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{1} \theta_{w, w}(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}=T_{1} \theta_{w, w}(w) \tag{e0.12}
\end{equation*}
$$

in norm.

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle=x\langle x, y\rangle .
$$

Hence $\theta_{w, w} \circ \theta_{w, x}=\theta_{x, x}$. We also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{1} \theta_{w, w}(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}=T_{1} \theta_{w, w}(w) \tag{e0.12}
\end{equation*}
$$

in norm. Therefore

$$
\begin{equation*}
\theta_{\psi\left(T_{1}\right)(x), y}=\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.13}
\end{equation*}
$$

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle=x\langle x, y\rangle .
$$

Hence $\theta_{w, w} \circ \theta_{w, x}=\theta_{x, x}$. We also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{1} \theta_{w, w}(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}=T_{1} \theta_{w, w}(w) \tag{e0.12}
\end{equation*}
$$

in norm. Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.13}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.14}
\end{align*}
$$

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle=x\langle x, y\rangle .
$$

Hence $\theta_{w, w} \circ \theta_{w, x}=\theta_{x, x}$. We also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{1} \theta_{w, w}(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}=T_{1} \theta_{w, w}(w) \tag{e0.12}
\end{equation*}
$$

in norm. Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.13}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.14}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.15}
\end{align*}
$$

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle=x\langle x, y\rangle .
$$

Hence $\theta_{w, w} \circ \theta_{w, x}=\theta_{x, x}$. We also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{1} \theta_{w, w}(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}=T_{1} \theta_{w, w}(w) \tag{e0.12}
\end{equation*}
$$

in norm. Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.13}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.14}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.15}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y} . \tag{e0.16}
\end{align*}
$$

To show the surjectivity of Φ, it suffices to show that $\Phi\left(\psi\left(T_{1}\right)\right)(k)=T_{1} k$ for all $k \in K(H)$. Since $\psi\left(T_{1}\right) \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$, it is enough to show that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. With notation above, let $w=\xi\langle x, x\rangle^{\beta}$ with $\beta=(3 \alpha-1) / 3$. Then, for any $y \in H$,

$$
\theta_{w, w} \circ \theta_{w, x}(y)=\xi\langle x, x\rangle^{\beta}\langle w, w\rangle\langle x, y\rangle=\xi\langle x, x\rangle^{\alpha}\langle x, y\rangle=x\langle x, y\rangle .
$$

Hence $\theta_{w, w} \circ \theta_{w, x}=\theta_{x, x}$. We also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{1} \theta_{w, w}(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}=T_{1} \theta_{w, w}(w) \tag{e0.12}
\end{equation*}
$$

in norm. Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.13}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.14}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.15}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y} . \tag{e0.16}
\end{align*}
$$

Therefore

$$
\begin{array}{rlr}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.19}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y .}
\end{array}
$$

On the other hand,

$$
T_{1} \theta_{x, y}
$$

Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.17}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x)+1 / n)^{-1}, y\right.} \tag{e0.18}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.19}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y} .
\end{align*}
$$

(e 0.20)
On the other hand,

$$
T_{1} \theta_{x, y}=\left(T_{1} \theta_{w, w}\right) \theta_{w, y}=\theta_{\left.T_{1} \theta_{w, w}\right)(w), y}
$$

Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.17}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x)+1 / n)^{-1}, y\right.} \tag{e0.18}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.19}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y} .
\end{align*}
$$

(e 0.20)
On the other hand,

$$
T_{1} \theta_{x, y}=\left(T_{1} \theta_{w, w}\right) \theta_{w, y}=\theta_{\left.T_{1} \theta_{w, w}\right)(w), y}
$$

It follows that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$.

Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.17}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x)+1 / n)^{-1}, y\right.} \tag{e0.18}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.19}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y .}
\end{align*}
$$

(e 0.20)
On the other hand,

$$
T_{1} \theta_{x, y}=\left(T_{1} \theta_{w, w}\right) \theta_{w, y}=\theta_{\left.T_{1} \theta_{w, w}\right)(w), y}
$$

It follows that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. Consequently Φ is surjective.

Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.17}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.18}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.19}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y} .
\end{align*}
$$

(e 0.20)
On the other hand,

$$
T_{1} \theta_{x, y}=\left(T_{1} \theta_{w, w}\right) \theta_{w, y}=\theta_{\left.T_{1} \theta_{w, w}\right)(w), y}
$$

It follows that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. Consequently Φ is surjective. Therefore Φ is an isometric isomorphism from the Banach algebra $B(H)$

Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.17}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.18}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.19}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y} .
\end{align*}
$$

(e 0.20)
On the other hand,

$$
T_{1} \theta_{x, y}=\left(T_{1} \theta_{w, w}\right) \theta_{w, y}=\theta_{\left.T_{1} \theta_{w, w}\right)(w), y}
$$

It follows that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. Consequently Φ is surjective. Therefore Φ is an isometric isomorphism from the Banach algebra $B(H)$ onto the Banach algebra $L M(K(H))$.

Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.17}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.18}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.19}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y} . \tag{e0.20}
\end{align*}
$$

On the other hand,

$$
T_{1} \theta_{x, y}=\left(T_{1} \theta_{w, w}\right) \theta_{w, y}=\theta_{\left.T_{1} \theta_{w, w}\right)(w), y}
$$

It follows that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. Consequently Φ is surjective. Therefore Φ is an isometric isomorphism from the Banach algebra $B(H)$ onto the Banach algebra $L M(K(H))$. Note that $\left.\Phi\right|_{K(H)}=\operatorname{id}_{K(H)}$.

Therefore

$$
\begin{align*}
\theta_{\psi\left(T_{1}\right)(x), y} & =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{x, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.17}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)\left(\theta_{w, x}(x)(\langle x, x\rangle+1 / n)^{-1}, y\right.} \tag{e0.18}\\
& =\lim _{n \rightarrow \infty} \theta_{\left(T_{1} \theta_{w, w}\right)(w)\langle x, x\rangle(\langle x, x\rangle+1 / n)^{-1}, y} \tag{e0.19}\\
& =\theta_{\left(T_{1} \theta_{w, w}\right)(w), y} . \tag{e0.20}
\end{align*}
$$

On the other hand,

$$
T_{1} \theta_{x, y}=\left(T_{1} \theta_{w, w}\right) \theta_{w, y}=\theta_{\left.T_{1} \theta_{w, w}\right)(w), y}
$$

It follows that $T_{1} \theta_{x, y}=\theta_{\psi\left(T_{1}\right)(x), y}$ for all $x, y \in H$. Consequently Φ is surjective. Therefore Φ is an isometric isomorphism from the Banach algebra $B(H)$ onto the Banach algebra $L M(K(H))$. Note that $\left.\Phi\right|_{K(H)}=\operatorname{id}_{K(H)}$. It is also clear that $\left.\Phi\right|_{L(H)}$ is the same map given by Kasparov.

Lemma 1.14

Let H be a Hilbert A-module and $x \in H$. Suppose that $\phi \in H^{\sharp}$. Then there exists a sequence $\left\{\zeta_{n}\right\}$ in $\overline{x A}$ such that

$$
\begin{equation*}
\left\langle\zeta_{n}, \zeta_{n}\right\rangle \phi(x) \rightarrow \phi(x) \tag{e0.21}
\end{equation*}
$$

in norm as $k \rightarrow \infty$.
Proof: Let $U: \overline{x A} \rightarrow R=\overline{\langle x, x\rangle A}$ be the Hilbert A-module isomomorphism. Recall that $U(y)^{*} U(z)=\langle y, z\rangle$ for all $y, z \in \overline{x A}$. Choose $0<\alpha_{n}<\alpha_{n+1}<1, n \in \mathbb{N}$ such that $\alpha_{n} \nearrow 1 / 2$. By Proposition 1.10, there are $x_{n} \in \overline{x A}$ with $\left\|x_{n}\right\| \leq\left\|\langle x, x\rangle^{1 / 2-\alpha}\right\|$ such that $x=x_{n}\langle x, x\rangle^{\alpha_{n}}$, $n \in \mathbb{N}$. Note that $\phi(x)=\phi\left(x_{n}\right)\langle x, x\rangle^{\alpha_{n}}$ for all $n \in \mathbb{N}$. Hence

$$
\begin{equation*}
\phi\left(x_{n}\right)\langle x, x\rangle^{1 / 2} \rightarrow \phi(x), \text { as } n \rightarrow \infty, \tag{e0.22}
\end{equation*}
$$

in norm. Put $y_{n}=x_{n}\langle x, x\rangle^{1 / n}, n \in \mathbb{N}$. Then $\phi\left(y_{n}\right)=\phi\left(x_{n}\right)\langle x, x\rangle^{1 / n} \in R^{*}$.

Let $U: \overline{x A} \rightarrow R=\overline{\langle x, x\rangle A}$ be the Hilbert A-module isomomorphism.
Recall that $U(y)^{*} U(z)=\langle y, z\rangle$ for all $y, z \in \overline{x A}$. Choose $0<\alpha_{n}<\alpha_{n+1}<1, n \in \mathbb{N}$ such that $\alpha_{n} \nearrow 1 / 2$. By Proposition 1.10, there are $x_{n} \in \overline{x A}$ with $\left\|x_{n}\right\| \leq\left\|\langle x, x\rangle^{1 / 2-\alpha}\right\|$ such that $x=x_{n}\langle x, x\rangle^{\alpha_{n}}$, $n \in \mathbb{N}$. Note that $\phi(x)=\phi\left(x_{n}\right)\langle x, x\rangle^{\alpha_{n}}$ for all $n \in \mathbb{N}$. Hence

$$
\begin{equation*}
\phi\left(x_{n}\right)\langle x, x\rangle^{1 / 2} \rightarrow \phi(x), \text { as } n \rightarrow \infty, \tag{e0.23}
\end{equation*}
$$

in norm. Put $y_{n}=x_{n}\langle x, x\rangle^{1 / n}, n \in \mathbb{N}$. Then $\phi\left(y_{n}\right)=\phi\left(x_{n}\right)\langle x, x\rangle^{1 / n} \in R^{*}$.
Moreover

$$
\phi\left(y_{n}\right)\langle x, x\rangle^{\alpha_{n}}=\phi\left(x_{n}\right)\langle x, x\rangle^{\alpha_{n}+1 / n} \rightarrow \phi(x) .
$$

in norm. Put $v_{n}=\phi\left(y_{n}\right)^{*} \in R$. for all $n \in \mathbb{N}$. Let $z_{n}=U^{-1}\left(v_{n}\right)$. Then,

$$
\left\langle z_{n}, x\langle x, x\rangle^{1 / n}\right\rangle=v_{n}^{*}\langle x, x\rangle^{1 / 2+1 / n} \rightarrow \phi(x) .
$$

By Lemma 1.12,

$$
\begin{equation*}
\left\langle z_{n}, x\right\rangle \rightarrow \phi(x) . \tag{e0.24}
\end{equation*}
$$

By Lemma 1.10, for each $m \in \mathbb{N}$, we write $z_{n}=\xi_{n, m}\left\langle z_{n}, z_{n}\right\rangle^{\alpha_{m}}$ for some $\xi_{n, m} \in \overline{x A}$, where $\left\langle\xi_{n, m}, \xi_{n, m}\right\rangle=\left\langle z_{n}, z_{n}\right\rangle^{1-2 \alpha_{m}}, n, m \in \mathbb{N}$. Let $w_{n, m}=\xi_{n, m}\left\langle z_{n}, z_{n}\right\rangle^{1 / 2 m}, m \in \mathbb{N}$.

Put $v_{n}=\phi\left(y_{n}\right)^{*} \in R$. for all $n \in \mathbb{N}$. Let $z_{n}=U^{-1}\left(v_{n}\right)$. Then,

$$
\left\langle z_{n}, x\langle x, x\rangle^{1 / n}\right\rangle=v_{n}^{*}\langle x, x\rangle^{1 / 2+1 / n} \rightarrow \phi(x)
$$

By Lemma 1.12,

$$
\begin{equation*}
\left\langle z_{n}, x\right\rangle \rightarrow \phi(x) . \tag{e0.25}
\end{equation*}
$$

By Lemma 1.10, for each $m \in \mathbb{N}$, we write $z_{n}=\xi_{n, m}\left\langle z_{n}, z_{n}\right\rangle^{\alpha_{m}}$ for some $\xi_{n, m} \in \overline{x A}$, where $\left\langle\xi_{n, m}, \xi_{n, m}\right\rangle=\left\langle z_{n}, z_{n}\right\rangle^{1-2 \alpha_{m}}, n, m \in \mathbb{N}$. Let $w_{n, m}=\xi_{n, m}\left\langle z_{n}, z_{n}\right\rangle^{1 / 2 m}, m \in \mathbb{N}$. Then, for fixed n,

$$
z_{n}\left\langle w_{n, m}, w_{n, m}\right\rangle=\xi_{n, m}\left\langle z_{n}, z_{n}\right\rangle^{1-\alpha_{m}+1 / m}=z_{n}\left\langle z_{n}, z_{n}\right\rangle^{1-2 \alpha_{m}+1 / m}
$$

Note that $\lim _{m \rightarrow \infty} 1-2 \alpha_{m}+1 / m=0$. By Lemma 1.12, $z_{n}\left\langle w_{n, m}, w_{n, m}\right\rangle \rightarrow z_{n}$ as $m \rightarrow \infty$. Therefore, there exists a subsequence $\{m(n)\}$ such that

$$
\left\langle w_{n, m(n)}, w_{n, m(n)}\right\rangle\left\langle z_{n}, x\right\rangle \rightarrow \phi(x)
$$

Hence

$$
\lim _{n \rightarrow \infty}\left\langle w_{n, m(n)}, w_{n, m(n)}\right\rangle \phi(x)=\phi(x)
$$

Put $\zeta_{n}=w_{n, m(n)}$. Then $\zeta_{n} \in \overline{x A}$ which meets the requirements.

Theorem1.14 Let A be a C^{*}-algebra and H be a Hilbert A-module. Then there exists an isometric linear map Φ_{1} from $B\left(H, H^{\sharp}\right)$ onto $Q M(K(H))$. Moreover, the restriction of Φ_{1} on $B(H)$ is the map described in Theorem 1.13.

Proof: Recall that H^{\sharp} is a Banach A-module with $\phi \cdot a(x)=a^{*} \phi(x)$ for all $x \in H$ and $a \in A$. Denote by $F(H)$ the linear span of rank one module maps of the form $\theta_{x, y}(x, y \in H)$. Recall also that $K(H)$ is the closure of $F(H)$. Define a map $\Phi_{1}: B\left(H, H^{\sharp}\right) \rightarrow Q M(K(H))$ by

$$
\begin{equation*}
\theta_{x^{\prime}, y^{\prime}} \Phi_{1}(T) \theta_{x, y}=\theta_{x^{\prime}, y\left(T(x)\left(y^{\prime}\right)\right.} \text { for all } T \in B\left(H, H^{\sharp}\right) \tag{e0.26}
\end{equation*}
$$

for any $x, y, x^{\prime}, y^{\prime} \in H$. (recall that $T(x)\left(y^{\prime}\right) \in A$). Extend $\Phi_{1}(T)$ linearly to a map of the form $F(H) \times F(H) \rightarrow F(H)$.
Suppose that $\|x\| \leq 1$ and $x=\xi\langle x, x\rangle^{\alpha}$ for some $0<1 / 3<\alpha<1 / 2$ as given by Lemma 1.10, where $\xi \in \overline{x A}$. Set $w=\xi\langle x, x\rangle^{\delta}$ for some $0<\delta<1 / 2$. In the next estimates, we will use the inequality $\left(T(w)\left(y^{\prime}\right)\right)^{*}\left(T(w)\left(y^{\prime}\right) \leq\|T(w)\|^{2}\left\langle y^{\prime}, y^{\prime}\right\rangle\right.$.

For $y, z \in H$ and $a \in A$, we have

$$
\begin{aligned}
& \left\|\theta_{x^{\prime}, y\left(T(x)\left(y^{\prime}\right)\right)}(z)\right\|^{2} \\
& =\left\|\langle z, y\rangle\left(T(x)\left(y^{\prime}\right)\right)\left\langle x^{\prime}, x^{\prime}\right\rangle\left(T(x)\left(y^{\prime}\right)\right)^{*}\langle y, z\rangle\right\| \\
& =\left\|\langle z, y\rangle\langle x, x\rangle^{\alpha-\delta}\left(T(w)\left(y^{\prime}\right)\right)\left\langle x^{\prime}, x^{\prime}\right\rangle\left(T(w)\left(y^{\prime}\right)\right)^{*}\langle x, x\rangle^{\alpha-\delta}\langle y, z\rangle\right\| \\
& \leq\left\|\left\langle x^{\prime} x^{\prime}\right\rangle^{1 / 2}\left(T(w)\left(y^{\prime}\right)\right)^{*}\right\|^{2}\| \|\langle x, x\rangle^{\alpha-\delta}\langle y, z\rangle \|^{2} \\
& =\left\|\left\langle x^{\prime} x^{\prime}\right\rangle^{1 / 2}\left(T(w)\left(y^{\prime}\right)\right)^{*}\left(T(w)\left(y^{\prime}\right)\right)\left\langle x^{\prime}, x^{\prime}\right\rangle^{1 / 2}\right\|\left\|\langle x, x\rangle^{\alpha-\delta}\langle y, z\rangle\right\|^{2} \\
& \leq\|T(w)\|^{2}\left\|\left\langle x^{\prime}, x^{\prime}\right\rangle^{1 / 2}\left\langle y^{\prime}, y^{\prime}\right\rangle\left\langle x^{\prime}, x^{\prime}\right\rangle^{1 / 2}\right\|\left\|\langle x, x\rangle^{\alpha-\delta}\langle y, z\rangle\langle z, y\rangle\langle x, x\rangle^{\alpha-\delta}\right\| \\
& \leq\|T(w)\|^{2}\left\|\left\langle x^{\prime}, x^{\prime}\right\rangle^{1 / 2}\left\langle y^{\prime}, y^{\prime}\right\rangle^{1 / 2}\right\|^{2}\left\|\langle x, x\rangle^{\alpha-\delta}\langle y, y\rangle^{1 / 2}\right\|^{2}\|z\|^{2} . \quad(\mathrm{e} 0.27)
\end{aligned}
$$

Let $\delta \rightarrow 0$. We obtain (with $\|x\| \leq 1$)

$$
\left\|\theta_{x^{\prime}, y\left(T(x)\left(y^{\prime}\right)\right)}(z)\right\| \leq\|T\|\left\|\left\langle x^{\prime}, x^{\prime}\right\rangle^{1 / 2}\left\langle y^{\prime} y^{\prime}\right\rangle^{1 / 2}\right\|\langle x, x\rangle^{\alpha}\langle y, y\rangle^{1 / 2}\|z\| .
$$

Then, let $\alpha \rightarrow 1 / 2$. We further obtain

$$
\begin{equation*}
\left\|\theta_{x^{\prime}, y^{\prime}} \Phi_{1}(T) \theta_{x, y}\right\| \leq\|T\|\left\|\theta_{x^{\prime}, y^{\prime}}\right\|\left\|\theta_{x, y}\right\| \tag{e0.28}
\end{equation*}
$$

for all $x, y, x^{\prime}, y^{\prime} \in H$.

We then uniquely extend a map $\Phi_{1}(T): K(H) \times K(H) \rightarrow K(H)$ which defines a quasi-multiplier of $K(H)$ and $\left\|\Phi_{1}(T)\right\| \leq\|T\|$ for all $T \in B\left(H, H^{\sharp}\right)$. To see that $\left\|\Phi_{1}(T)\right\|=\|T\|$, we assume that $\|x\|,\|y\|,\left\|y^{\prime}\right\| \leq 1$. Put $\zeta=y\left(T(x)\left(y^{\prime}\right)\right.$ and $\zeta=v\langle\zeta, \zeta\rangle^{\alpha}$ for some $1 / 3<\alpha<1 / 2$, where $v \in \overline{\zeta A}$ and $\langle v, v\rangle=\langle\zeta, \zeta\rangle^{1-2 \alpha}$. For $\eta>0$, choose $x^{\prime}=v\langle\zeta, \zeta\rangle^{\eta} /\| \| v\langle\zeta, \zeta\rangle^{\eta} \|$. Then $\left\|x^{\prime}\right\| \leq 1$. Note that

$$
\begin{align*}
\left\langle x^{\prime}, x^{\prime}\right\rangle & =\langle v, v\rangle\langle\zeta, \zeta\rangle^{\eta} /\| \| v\langle\zeta, \zeta\rangle^{\eta} \| \\
& =\frac{\left\langle y T(x)\left(y^{\prime}\right), y T(x)\left(y^{\prime}\right)\right\rangle^{1-2 \alpha+\eta}}{\|\left\langle y T(x)\left(y^{\prime}\right), y T(x)\left(y^{\prime}\right)\right\rangle^{1-2 \alpha+\eta \|}} \tag{e0.29}\\
& =\frac{\left(\left(T(x)\left(y^{\prime}\right)\right)^{*}\langle y, y\rangle\left(T(x)\left(y^{\prime}\right)\right)\right)^{1-2 \alpha+\eta}}{\|\left(\left(T(x)\left(y^{\prime}\right)\right)^{*}\langle y, y\rangle\left(T(x)\left(y^{\prime}\right)\right)\right)^{1-2 \alpha+\eta \|}} \tag{e0.30}
\end{align*}
$$

It follows that

$$
\begin{array}{r}
\left\langle x^{\prime}, x^{\prime}\right\rangle\left(T(x)\left(y^{\prime}\right)\right)^{*}\langle y, y\rangle\left(T(x)\left(y^{\prime}\right)\right) \rightarrow \\
\left(T(x)\left(y^{\prime}\right)\right)^{*}\langle y, y\rangle\left(T(x)\left(y^{\prime}\right)\right) \tag{e0.32}
\end{array}
$$

as $\eta \rightarrow 0$ and $\alpha \rightarrow 1 / 2$.

We have, by (e 0.31), when $\delta \rightarrow 0$ and $\alpha \rightarrow 1 / 2$,

$$
\begin{align*}
\left\|\theta_{x^{\prime}, y^{\prime}} \Phi_{1}(T) \theta_{x, y}\right\|= & \left\|\theta_{x^{\prime}, y T(x)\left(y^{\prime}\right)}\right\| \\
= & \left\|\left\langle x^{\prime}, x^{\prime}\right\rangle^{1 / 2}\left(\left(T(x)\left(y^{\prime}\right)\right)^{*}\langle y, y\rangle\left(T(x)\left(y^{\prime}\right)\right)\right)^{1 / 2}\right\| \\
& \rightarrow\left\|\langle y, y\rangle^{1 / 2} T(x)\left(y^{\prime}\right)\right\| \tag{e0.33}
\end{align*}
$$

For any $\epsilon>0$, there are $x, y^{\prime} \in H$ with $\|x\| \leq 1$ and $\left\|y^{\prime}\right\| \leq 1$ such that

$$
\begin{equation*}
\left\|T(x)\left(y^{\prime}\right)\right\|>\|T\|-\epsilon / 2 \tag{e0.34}
\end{equation*}
$$

Then, by (e 0.33), for sufficiently small δ and α close to $1 / 2$, by applying Lemma 1.10 and by choosing a y in the unit ball of H properly

$$
\begin{equation*}
\left\|\theta_{x^{\prime}, y^{\prime}} \Phi_{1}(T) \theta_{x, y}\right\| \geq\|T\|-\epsilon \tag{e0.35}
\end{equation*}
$$

This implies that $\left\|\Phi_{1}(T)\right\|=\|T\|$. So Φ_{1} is an isometry from $B\left(H, H^{\sharp}\right)$. Next we will show that Φ_{1} is surjective. Let $T_{1} \in Q M(K(H))$. For any $k \in K(H)$, we have $k \cdot T_{1} \in L M(K(H))$. For $x, y \in H$, write $y=\xi_{1}\langle y, y\rangle^{\alpha}$ (for some $1 / 3<\alpha<1 / 2$) with $\left\langle\xi_{1}, \xi_{1}\right\rangle=\langle y, y\rangle^{1-2 \alpha}$ and define $\zeta_{1}=\xi_{1}\langle y, y\rangle^{2 \alpha-1 / 2}$.

We verify that, for any $u \in H$,

$$
\begin{align*}
\theta_{\zeta_{1}, \zeta_{1}} \theta_{\xi_{1}, \xi_{1}}(u) & =\zeta_{1}\left\langle\zeta_{1}, \xi_{1}\right\rangle\left\langle\xi_{1}, u\right\rangle=\xi_{1}\langle y, y\rangle^{4 \alpha-1}\langle y, y\rangle^{1-2 \alpha}\left\langle\xi_{1}, u\right\rangle \\
& =\xi_{1}\langle y, y\rangle^{2 \alpha}\left\langle\xi_{1}, u\right\rangle=y\langle y, u\rangle . \tag{e0.36}
\end{align*}
$$

In other words, $\theta_{\zeta_{1}, \zeta_{1}} \theta_{\xi_{1}, \xi_{1}}=\theta_{y, y}$.
Let ψ be the same notation used in the proof of Theorem 1.13. Define

$$
\begin{array}{r}
\left(\psi_{1}\left(T_{1}\right)\right)(x)(y)=\lim _{n \rightarrow \infty}\left\langle\psi\left(\theta_{y, y} T_{1}\right)(x), y\right\rangle(\langle y, y\rangle+1 / n)^{-1} \\
=\lim _{n \rightarrow \infty}\left\langle\psi\left(\theta_{\zeta_{1}, \zeta_{1}} \theta_{\xi_{1}, \xi_{1}} T_{1}\right)(x), y\right\rangle(\langle y, y\rangle+1 / n)^{-1} \\
\lim _{n \rightarrow \infty}\left\langle\psi\left(\theta_{\zeta_{1}, \zeta_{1}}\right) \psi\left(\theta_{\xi_{1}, \xi_{1}} T_{1}\right)(x), y\right\rangle(\langle y, y\rangle+1 / n)^{-1} \\
=\lim _{n \rightarrow \infty}\left\langle\psi\left(\theta_{\xi_{1}, \xi_{1}} T_{1}\right)(x), \theta_{\zeta_{1}, \zeta_{1}}(y)\right\rangle(\langle y, y\rangle+1 / n)^{-1} \\
=\lim _{n \rightarrow \infty}\left\langle\psi\left(\theta_{\xi_{1}, \xi_{1}} T_{1}\right)(x), \zeta_{1}\right\rangle\left\langle\zeta_{1}, y\right\rangle(\langle y, y\rangle+1 / n)^{-1} \\
=\lim _{n \rightarrow \infty}\left\langle\psi\left(\theta_{\xi_{1}, \xi_{1}} T_{1}\right)(x), \xi_{1}\right\rangle\langle y, y\rangle^{3 \alpha}(\langle y, y\rangle+1 / n)^{-1} \\
=\left\langle\psi\left(\theta_{\xi_{1}, \xi_{1}} T_{1}\right)(x), \xi_{1}\right\rangle\langle y, y\rangle^{3 \alpha-1} \tag{e0.42}
\end{array}
$$

(converges in norm as $3 \alpha-1>0$).

This shows that, for any $x \in H, \psi_{1}\left(T_{1}\right)(x)$ is a linear map from H to A. If we choose $\|y\|=1$, then, by (??), we have

$$
\begin{array}{r}
\left\|\left(\psi_{1}\left(T_{1}\right)\right)(x)(y)\right\|=\left\|\left\langle\psi\left(\theta_{\xi_{1}, \xi_{1}} T_{1}\right)(x), \xi_{1}\right\rangle\langle y, y\rangle^{3 \alpha-1}\right\| \\
\quad \leq\left\|\psi\left(\theta_{\xi, \xi} T_{1}\right)\right\|\|x\| \leq\left\|\theta_{\xi, \xi} T_{1}\right\|\|x\| \leq\left\|T_{1}\right\|\|x\| . \tag{e0.44}
\end{array}
$$

This shows that $\psi_{1}\left(T_{1}\right)$ is a bounded linear map from H to H^{\sharp}. As in the proof of Theorem 1.13, in fact, it is a bounded module map in $B\left(H, H^{\sharp}\right)$. To show that Φ_{1} is surjective, we need to show that $\Phi_{1}\left(\psi_{1}\left(T_{1}\right)\right)=T_{1}$. It then suffices to show that $\theta_{x^{\prime}, x^{\prime}} T_{1} \theta_{x, y}=\theta_{x, y\left(\psi_{1}\left(T_{1}\right)(x)\left(y^{\prime}\right)\right)}$ for $T_{1} \in Q M(K(H))$ and $x, y, x^{\prime}, y^{\prime} \in H$. With $1 / 3<\alpha<1 / 2$, we keep write $x=\xi\langle x, x\rangle^{\alpha}$ as above, and $y^{\prime}=\xi^{\prime}\left\langle y^{\prime}, y^{\prime}\right\rangle^{\alpha}$ with $\left\langle\xi^{\prime}, \xi^{\prime}\right\rangle=\left\langle y^{\prime}, y^{\prime}\right\rangle^{1-2 \alpha}$. Set $w_{1}=\xi\langle x, x\rangle^{\alpha-1 / 3}$ and $w_{2}=\xi^{\prime}\left\langle y^{\prime}, y^{\prime}\right\rangle^{\alpha-1 / 2}$. From the proof of Theorem 1.13 (see (e 0.12$)$) we know that, for $S \in L M(K(H))$, $\psi(S)(x)=S \theta_{w_{1}, w_{1}}\left(w_{1}\right)$. Hence

$$
\begin{array}{r}
\theta_{x^{\prime}, y\left(\psi_{1}\left(T_{1}\right)(x)\left(y^{\prime}\right)\right)}=\lim _{n \rightarrow \infty} \theta_{x^{\prime}, y\left\langle\psi\left(\theta_{y^{\prime}, y^{\prime}} T_{1}\right)(x), y^{\prime}\right\rangle\left[\left\langle y^{\prime}, y^{\prime}\right\rangle+1 / n\right]^{-1}}=\lim _{n \rightarrow \infty} \theta_{x^{\prime}, y\left\langle\psi\left(\theta_{w, w} T_{1}\right)(x), w\right\rangle\left\langle y^{\prime}, y\right\rangle\left[\left\langle y^{\prime}, y^{\prime}\right\rangle+1 / n\right]^{-1}}
\end{array}
$$

Hence

$$
\begin{align*}
\theta_{x^{\prime}, y\left(\psi_{1}\left(T_{1}\right)(x)\left(y^{\prime}\right)\right)} & =\lim _{n \rightarrow \infty} \theta_{x^{\prime}, y\left\langle\psi\left(\theta_{y^{\prime}, y^{\prime}} T_{1}\right)(x), y^{\prime}\right\rangle\left[\left\langle y^{\prime}, y^{\prime}\right\rangle+1 / n\right]^{-1}} \\
& =\lim _{n \rightarrow \infty} \theta_{x^{\prime}, y\left\langle\psi\left(\theta_{w, w} T_{1}\right)(x), w\right\rangle\left\langle y^{\prime}, y\right\rangle\left[\left\langle y^{\prime}, y^{\prime}\right\rangle+1 / n\right]^{-1}} \\
& =\theta_{x^{\prime}, y}\left\langle\psi\left(\theta_{w, w} T_{1}\right)(x), w\right\rangle \tag{e0.47}
\end{align*}
$$

On the other hand,

$$
\theta_{x^{\prime}, y^{\prime}} T \theta_{x, y}=\theta_{x^{\prime}, w_{2}} \theta_{w_{2}, w_{2}} T_{1} \theta_{w_{1}, w_{1}} \theta_{w_{1}, y}=\theta_{x^{\prime}, y\left\langle\theta_{w_{2}, w_{2}} T_{1} \theta_{w_{1}, w_{1}}\left(w_{1}\right), w_{2}\right\rangle}
$$

Thus $\theta_{x^{\prime} y^{\prime}} T_{1} \theta_{x, y}=\theta_{x^{\prime}, y\left(\psi_{1}\left(T_{1}\right)(x)\left(y^{\prime}\right)\right.}$. It follows $\Phi_{1}\left(\psi_{1}\left(T_{1}\right)\right)=T_{1}$ and Φ_{1} is surjective. Note also that the restriction of Φ_{1} on $L(H)$ is Φ defined in Theorem 1.13.

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$.

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$.

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$.

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$.

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$. Then T has no adjoint.

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$. Then T has no adjoint. In other words, $T \notin L\left(H_{A}\right)$. Consequently $L M\left(K\left(H_{A}\right)\right) \neq M\left(K\left(H_{A}\right)\right)$, or $B\left(H_{A}\right) \neq L\left(H_{A}\right)$.

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$. Then T has no adjoint. In other words, $T \notin L\left(H_{A}\right)$. Consequently $L M\left(K\left(H_{A}\right)\right) \neq M\left(K\left(H_{A}\right)\right)$, or $B\left(H_{A}\right) \neq L\left(H_{A}\right)$.
To see T has no adjoint, assume that there is a bounded module map $T^{*} \in L\left(H_{A}\right)$

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$. Then T has no adjoint. In other words, $T \notin L\left(H_{A}\right)$. Consequently $L M\left(K\left(H_{A}\right)\right) \neq M\left(K\left(H_{A}\right)\right)$, or $B\left(H_{A}\right) \neq L\left(H_{A}\right)$.
To see T has no adjoint, assume that there is a bounded module map $T^{*} \in L\left(H_{A}\right)$ such that

$$
\langle T(x), e\rangle=\left\langle x, T^{*}(e)\right\rangle \text { for all } x, y \in H_{A}
$$

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$. Then T has no adjoint. In other words, $T \notin L\left(H_{A}\right)$. Consequently $L M\left(K\left(H_{A}\right)\right) \neq M\left(K\left(H_{A}\right)\right)$, or $B\left(H_{A}\right) \neq L\left(H_{A}\right)$.
To see T has no adjoint, assume that there is a bounded module map $T^{*} \in L\left(H_{A}\right)$ such that

$$
\langle T(x), e\rangle=\left\langle x, T^{*}(e)\right\rangle \text { for all } x, y \in H_{A}
$$

Put $\zeta=T^{*}(e)$.

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$. Then T has no adjoint. In other words, $T \notin L\left(H_{A}\right)$. Consequently $L M\left(K\left(H_{A}\right)\right) \neq M\left(K\left(H_{A}\right)\right)$, or $B\left(H_{A}\right) \neq L\left(H_{A}\right)$.
To see T has no adjoint, assume that there is a bounded module map $T^{*} \in L\left(H_{A}\right)$ such that

$$
\langle T(x), e\rangle=\left\langle x, T^{*}(e)\right\rangle \text { for all } x, y \in H_{A}
$$

Put $\zeta=T^{*}(e)$. Then for all $x \in H_{A}$,

$$
\langle x, \zeta\rangle
$$

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$. Then T has no adjoint. In other words, $T \notin L\left(H_{A}\right)$. Consequently $L M\left(K\left(H_{A}\right)\right) \neq M\left(K\left(H_{A}\right)\right)$, or $B\left(H_{A}\right) \neq L\left(H_{A}\right)$.
To see T has no adjoint, assume that there is a bounded module map $T^{*} \in L\left(H_{A}\right)$ such that

$$
\langle T(x), e\rangle=\left\langle x, T^{*}(e)\right\rangle \text { for all } x, y \in H_{A}
$$

Put $\zeta=T^{*}(e)$. Then for all $x \in H_{A}$,

$$
\langle x, \zeta\rangle=\left\langle x, T^{*}(e)\right\rangle=
$$

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$. Then T has no adjoint. In other words, $T \notin L\left(H_{A}\right)$. Consequently $L M\left(K\left(H_{A}\right)\right) \neq M\left(K\left(H_{A}\right)\right)$, or $B\left(H_{A}\right) \neq L\left(H_{A}\right)$.
To see T has no adjoint, assume that there is a bounded module map $T^{*} \in L\left(H_{A}\right)$ such that

$$
\langle T(x), e\rangle=\left\langle x, T^{*}(e)\right\rangle \text { for all } x, y \in H_{A}
$$

Put $\zeta=T^{*}(e)$. Then for all $x \in H_{A}$,

$$
\langle x, \zeta\rangle=\left\langle x, T^{*}(e)\right\rangle=\langle T(x), e\rangle=f(x)^{*}\langle e, e\rangle .=f(x)^{*} .
$$

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$.
Then T has no adjoint. In other words, $T \notin L\left(H_{A}\right)$. Consequently $L M\left(K\left(H_{A}\right)\right) \neq M\left(K\left(H_{A}\right)\right)$, or $B\left(H_{A}\right) \neq L\left(H_{A}\right)$.
To see T has no adjoint, assume that there is a bounded module map $T^{*} \in L\left(H_{A}\right)$ such that

$$
\langle T(x), e\rangle=\left\langle x, T^{*}(e)\right\rangle \text { for all } x, y \in H_{A}
$$

Put $\zeta=T^{*}(e)$. Then for all $x \in H_{A}$,

$$
\langle x, \zeta\rangle=\left\langle x, T^{*}(e)\right\rangle=\langle T(x), e\rangle=f(x)^{*}\langle e, e\rangle .=f(x)^{*} .
$$

In other words, $f(x)=\langle\zeta, x\rangle$ for all $x \in H_{A}$.

Examples

Let A be a unital C^{*}-algebra which has a sequence of positive elements $\left\{d_{n}\right\}$ such that $\left\|d_{n}\right\|=1$ and $d_{i} d_{j}=0$ if $i \neq j$. We have shown that there is $f \in H_{A}^{\sharp}$ but $f \notin H_{A}$. Choose $e \in H_{A}$ with $e=\left\{a_{n}\right\}$, where $a_{1}=1_{A}$, $a_{n}=0$ if $n>1$. Define $T \in B\left(H_{A}\right)$ by $T(x)=e f(x)$ for all $x \in H_{A}$.
Then T has no adjoint. In other words, $T \notin L\left(H_{A}\right)$. Consequently $L M\left(K\left(H_{A}\right)\right) \neq M\left(K\left(H_{A}\right)\right)$, or $B\left(H_{A}\right) \neq L\left(H_{A}\right)$.
To see T has no adjoint, assume that there is a bounded module map $T^{*} \in L\left(H_{A}\right)$ such that

$$
\langle T(x), e\rangle=\left\langle x, T^{*}(e)\right\rangle \text { for all } x, y \in H_{A}
$$

Put $\zeta=T^{*}(e)$. Then for all $x \in H_{A}$,

$$
\langle x, \zeta\rangle=\left\langle x, T^{*}(e)\right\rangle=\langle T(x), e\rangle=f(x)^{*}\langle e, e\rangle .=f(x)^{*} .
$$

In other words, $f(x)=\langle\zeta, x\rangle$ for all $x \in H_{A}$. A contradiction.

Q: When are $B(H)=L(H)$?

Q: When are $B(H)=L(H)$? (or $M(B)=L M(B)$?)

Q: When are $B(H)=L(H)$? (or $M(B)=L M(B)$?)

Proposition

Let A be a separable C^{*}-algebra and $H=I^{2}(A)$. Then $B(H)=L(H)$ if and only if A is separable and dual.

Q: When are $B(H)=L(H)$? (or $M(B)=L M(B)$?)

Proposition

Let A be a separable C^{*}-algebra and $H=I^{2}(A)$. Then $B(H)=L(H)$ if and only if A is separable and dual.

A C^{*}-algebra C is a dual C^{*}-algebra, if $C \cong \oplus_{n=1}^{\infty} C_{n}$, where $C_{n} \cong K$, or $C_{n}=M_{r(n)}$ for some $r(n) \in \mathbb{N}$, or $C_{n}=\{0\}$.

Q: When are $B(H)=L(H)$? (or $M(B)=L M(B)$?)

Proposition

Let A be a separable C^{*}-algebra and $H=I^{2}(A)$. Then $B(H)=L(H)$ if and only if A is separable and dual.

A C^{*}-algebra C is a dual C^{*}-algebra, if $C \cong \oplus_{n=1}^{\infty} C_{n}$, where $C_{n} \cong K$, or $C_{n}=M_{r(n)}$ for some $r(n) \in \mathbb{N}$, or $C_{n}=\{0\}$.

Example:

(1) If A is unital, then $A=M(A)=L M(A)=Q M(A)$.

Q: When are $B(H)=L(H)$? (or $M(B)=L M(B)$?)

Proposition

Let A be a separable C^{*}-algebra and $H=I^{2}(A)$. Then $B(H)=L(H)$ if and only if A is separable and dual.

A C^{*}-algebra C is a dual C^{*}-algebra, if $C \cong \oplus_{n=1}^{\infty} C_{n}$, where $C_{n} \cong K$, or $C_{n}=M_{r(n)}$ for some $r(n) \in \mathbb{N}$, or $C_{n}=\{0\}$.

Example:

(1) If A is unital, then $A=M(A)=L M(A)=Q M(A)$.
(2) Let A be a commutative C^{*}-algebra. Then $M(A)=L M(A)=Q M(A)$.

Q: When are $B(H)=L(H)$? (or $M(B)=L M(B)$?)

Proposition

Let A be a separable C^{*}-algebra and $H=I^{2}(A)$. Then $B(H)=L(H)$ if and only if A is separable and dual.

A C^{*}-algebra C is a dual C^{*}-algebra, if $C \cong \oplus_{n=1}^{\infty} C_{n}$, where $C_{n} \cong K$, or $C_{n}=M_{r(n)}$ for some $r(n) \in \mathbb{N}$, or $C_{n}=\{0\}$.

Example:

(1) If A is unital, then $A=M(A)=L M(A)=Q M(A)$.
(2) Let A be a commutative C^{*}-algebra. Then $M(A)=L M(A)=Q M(A)$.
(3) If $M(C)=L M(C)$, and $B=M_{r}(C), L M(B)=M(B)$.
(4) Let A be a non-unital but σ-unital simple C^{*}-algebra.

Q: When are $B(H)=L(H)$? (or $M(B)=L M(B)$?)

Proposition

Let A be a separable C^{*}-algebra and $H=I^{2}(A)$. Then $B(H)=L(H)$ if and only if A is separable and dual.

A C^{*}-algebra C is a dual C^{*}-algebra, if $C \cong \oplus_{n=1}^{\infty} C_{n}$, where $C_{n} \cong K$, or $C_{n}=M_{r(n)}$ for some $r(n) \in \mathbb{N}$, or $C_{n}=\{0\}$.

Example:

(1) If A is unital, then $A=M(A)=L M(A)=Q M(A)$.
(2) Let A be a commutative C^{*}-algebra. Then $M(A)=L M(A)=Q M(A)$.
(3) If $M(C)=L M(C)$, and $B=M_{r}(C), L M(B)=M(B)$.
(4) Let A be a non-unital but σ-unital simple C^{*}-algebra. Then
$M(A)=L M(A)$ if and only if A is elementary.

What is the relationship between $L M(A)$ and $Q M(A)$?

What is the relationship between $L M(A)$ and $Q M(A)$? Note that $R M(A)=L M(A)^{*}$.

What is the relationship between $L M(A)$ and $Q M(A)$? Note that $R M(A)=L M(A)^{*}$.

Theorem (HL-1986)
Let A be a separable and stable C^{*}-algebra.

What is the relationship between $L M(A)$ and $Q M(A)$? Note that $R M(A)=L M(A)^{*}$.

Theorem (HL-1986)
Let A be a separable and stable C^{*}-algebra. Then $L M(A)+R M(A)=Q M(A)$

What is the relationship between $L M(A)$ and $Q M(A)$? Note that $R M(A)=L M(A)^{*}$.

Theorem (HL-1986)
Let A be a separable and stable C^{*}-algebra. Then $L M(A)+R M(A)=Q M(A)$ if and only if A has a finite composition series with dual quotients:

What is the relationship between $L M(A)$ and $Q M(A)$? Note that $R M(A)=L M(A)^{*}$.

Theorem (HL-1986)
Let A be a separable and stable C^{*}-algebra. Then $L M(A)+R M(A)=Q M(A)$ if and only if A has a finite composition series with dual quotients: i.e. there are ideals

$$
0=I_{0} \triangleleft I_{1} \triangleleft \cdots \triangleleft I_{n-1} \triangleleft I_{n}=A
$$

What is the relationship between $L M(A)$ and $Q M(A)$? Note that $R M(A)=L M(A)^{*}$.

Theorem (HL-1986)
Let A be a separable and stable C^{*}-algebra. Then $L M(A)+R M(A)=Q M(A)$ if and only if A has a finite composition series with dual quotients: i.e. there are ideals

$$
0=I_{0} \triangleleft I_{1} \triangleleft \cdots \triangleleft I_{n-1} \triangleleft I_{n}=A
$$

such that I_{i+1} / I_{i} is a dual C^{*}-algebra, $i=0,1, \ldots, n-1$.

